Engineering Proteins by Combining Deep Mutational Scanning and Yeast Display.
Deep mutational scanning
Enrichment ratio
Heat maps
Protein engineering
Sequence-activity landscape
T cell receptors
Yeast display
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
3
5
2022
Statut:
ppublish
Résumé
Protein engineering using display platforms such as yeast display and phage display has allowed discovery of proteins with therapeutic and industrial applications. Antibodies and T cell receptors developed for therapeutic applications are often engineered by constructing libraries of mutations in loops of five to ten residues called complementarity determining regions that are in proximity to the antigen. In the past decade, deep mutational scanning has become a powerful tool in a protein engineer's toolbox, as it allows one to compare the impact of all 20 amino acids at each position, across the length of the protein. Thus, a single experiment can provide a sequence-activity landscape with information about hotspots or suboptimal binding sites in the original proteins. These residues or regions may be overlooked by engineering methods that are driven solely by structures or directed evolution of error-prone PCR libraries. Here, we describe experimental methods to engineer proteins by combining yeast display and deep mutational scanning mutagenesis, using T cell receptors as an example.
Identifiants
pubmed: 35482188
doi: 10.1007/978-1-0716-2285-8_7
doi:
Substances chimiques
Receptors, Antigen, T-Cell
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
117-142Subventions
Organisme : NCI NIH HHS
ID : R21 CA238628
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317. https://doi.org/10.1126/science.4001944
doi: 10.1126/science.4001944
pubmed: 4001944
Clackson T, Hoogenboom HR, Griffiths AD, Winter G (1991) Making antibody fragments using phage display libraries. Nature 352(6336):624–628
doi: 10.1038/352624a0
Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557
doi: 10.1038/nbt0697-553
Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444
doi: 10.1016/S0076-6879(00)28410-3
Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D, Fields S (2010) High-resolution mapping of protein sequence-function relationships. Nat Methods 7(9):741–746. https://doi.org/10.1038/nmeth.1492
doi: 10.1038/nmeth.1492
pubmed: 20711194
pmcid: 2938879
Araya CL, Fowler DM (2011) Deep mutational scanning: assessing protein function on a massive scale. Trends Biotechnol 29(9):435–442. https://doi.org/10.1016/j.tibtech.2011.04.003
doi: 10.1016/j.tibtech.2011.04.003
pubmed: 21561674
pmcid: 3159719
Whitehead TA, Chevalier A, Song Y, Dreyfus C, Fleishman SJ, De Mattos C, Myers CA, Kamisetty H, Blair P, Wilson IA, Baker D (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30(6):543–548. https://doi.org/10.1038/nbt.2214
doi: 10.1038/nbt.2214
pubmed: 22634563
pmcid: 3638900
Procko E, Hedman R, Hamilton K, Seetharaman J, Fleishman SJ, Su M, Aramini J, Kornhaber G, Hunt JF, Tong L, Montelione GT, Baker D (2013) Computational design of a protein-based enzyme inhibitor. J Mol Biol 425(18):3563–3575. https://doi.org/10.1016/j.jmb.2013.06.035
doi: 10.1016/j.jmb.2013.06.035
pubmed: 23827138
Fowler DM, Stephany JJ, Fields S (2014) Measuring the activity of protein variants on a large scale using deep mutational scanning. Nat Protoc 9(9):2267–2284. https://doi.org/10.1038/nprot.2014.153
doi: 10.1038/nprot.2014.153
pubmed: 25167058
pmcid: 4412028
Fowler DM, Fields S (2014) Deep mutational scanning: a new style of protein science. Nat Methods 11(8):801–807. https://doi.org/10.1038/nmeth.3027
doi: 10.1038/nmeth.3027
pubmed: 25075907
pmcid: 4410700
Harris DT, Singh NK, Cai Q, Smith SN, Vander Kooi CW, Procko E, Kranz DM, Baker BM (2016) An engineered switch in T cell receptor specificity leads to an unusual but functional binding geometry. Structure 24(7):1142–1154. https://doi.org/10.1016/j.str.2016.04.011
doi: 10.1016/j.str.2016.04.011
pubmed: 27238970
pmcid: 4938795
Harris DT, Wang N, Riley TP, Anderson SD, Singh NK, Procko E, Baker BM, Kranz DM (2016) Deep mutational scans as a guide to engineering high-affinity T cell receptor interactions with peptide-bound MHC. J Biol Chem 291:24566. https://doi.org/10.1074/jbc.M116.748681
doi: 10.1074/jbc.M116.748681
pubmed: 27681597
pmcid: 5114409
Sharma P, Kranz DM (2018) Subtle changes at the variable domain interface of the T-cell receptor can strongly increase affinity. J Biol Chem 293(5):1820–1834. https://doi.org/10.1074/jbc.M117.814152
doi: 10.1074/jbc.M117.814152
pubmed: 29229779
Fowler DM, Araya CL, Gerard W, Fields S (2011) Enrich: software for analysis of protein function by enrichment and depletion of variants. Bioinformatics 27(24):3430–3431. https://doi.org/10.1093/bioinformatics/btr577
doi: 10.1093/bioinformatics/btr577
pubmed: 22006916
pmcid: 3232369
Rubin AF, Gelman H, Lucas N, Bajjalieh SM, Papenfuss AT, Speed TP, Fowler DM (2017) A statistical framework for analyzing deep mutational scanning data. Genome Biol 18(1):150. https://doi.org/10.1186/s13059-017-1272-5
doi: 10.1186/s13059-017-1272-5
pubmed: 28784151
pmcid: 5547491
Kieke MC, Shusta EV, Boder ET, Teyton L, Wittrup KD, Kranz DM (1999) Selection of functional T cell receptor mutants from a yeast surface- display library. Proc Natl Acad Sci U S A 96(10):5651–5656
doi: 10.1073/pnas.96.10.5651
Richman SA, Kranz DM, Stone JD (2009) Biosensor detection systems: engineering stable, high-affinity bioreceptors by yeast surface display. Methods Mol Biol 504:323–350. https://doi.org/10.1007/978-1-60327-569-9_19
doi: 10.1007/978-1-60327-569-9_19
pubmed: 19159105
pmcid: 3096842
Stone JD, Chervin AS, Aggen DH, Kranz DM (2012) T cell receptor engineering. Methods Enzymol 503:189–222. https://doi.org/10.1016/B978-0-12-396962-0.00008-2 . B978-0-12-396962-0.00008-2 [pii]
doi: 10.1016/B978-0-12-396962-0.00008-2
pubmed: 22230570
Smith SN, Harris DT, Kranz DM (2015) T cell receptor engineering and analysis using the yeast display platform. Methods Mol Biol 1319:95–141. https://doi.org/10.1007/978-1-4939-2748-7_6
doi: 10.1007/978-1-4939-2748-7_6
pubmed: 26060072
pmcid: 5562502
Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11(4):355–360
doi: 10.1002/yea.320110408
Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96
doi: 10.1016/S0076-6879(02)50957-5
Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. https://doi.org/10.1038/nprot.2007.13
doi: 10.1038/nprot.2007.13
pubmed: 17401334
Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956
doi: 10.1006/jmbi.1999.3130
Holler PD, Holman PO, Shusta EV, O’Herrin S, Wittrup KD, Kranz DM (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci U S A 97(10):5387–5392
doi: 10.1073/pnas.080078297
Shusta EV, Holler PD, Kieke MC, Kranz DM, Wittrup KD (2000) Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 18(7):754–759
doi: 10.1038/77325
Weber KS, Donermeyer DL, Allen PM, Kranz DM (2005) Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function. Proc Natl Acad Sci U S A 102(52):19033–19038
doi: 10.1073/pnas.0507554102
Smith SN, Sommermeyer D, Piepenbrink KH, Blevins SJ, Bernhard H, Uckert W, Baker BM, Kranz DM (2013) Plasticity in the contribution of T cell receptor variable region residues to binding of peptide-HLA-A2 complexes. J Mol Biol 425(22):4496–4507. https://doi.org/10.1016/j.jmb.2013.08.007 . S0022-2836(13)00510-X [pii]
doi: 10.1016/j.jmb.2013.08.007
pubmed: 23954306
Gupta K, Varadarajan R (2018) Insights into protein structure, stability and function from saturation mutagenesis. Curr Opin Struct Biol 50:117–125. https://doi.org/10.1016/j.sbi.2018.02.006
doi: 10.1016/j.sbi.2018.02.006
pubmed: 29505936
pmcid: 6078801
Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, Kircher M, Khechaduri A, Dines JN, Hause RJ, Bhatia S, Evans WE, Relling MV, Yang W, Shendure J, Fowler DM (2018) Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet 50(6):874–882. https://doi.org/10.1038/s41588-018-0122-z
doi: 10.1038/s41588-018-0122-z
pubmed: 29785012
pmcid: 5980760