On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.


Journal

Lab on a chip
ISSN: 1473-0189
Titre abrégé: Lab Chip
Pays: England
ID NLM: 101128948

Informations de publication

Date de publication:
17 05 2022
Historique:
pubmed: 29 4 2022
medline: 20 5 2022
entrez: 28 4 2022
Statut: epublish

Résumé

By integrating surface acoustic waves (SAW) into microfluidic devices, microparticle systems can be fractionated precisely in flexible and easily scalable Lab-on-a-Chip platforms. The widely adopted driving mechanism behind this principle is the acoustic radiation force, which depends on the size and acoustic properties of the suspended particles. Superimposed fluid motion caused by the acoustic streaming effect can further manipulate particle trajectories and might have a negative influence on the fractionation result. A characterization of the crucial parameters that affect the pattern and scaling of the acoustically induced flow is thus essential for the design of acoustofluidic separation systems. For the first time, the fluid flow induced by pseudo-standing acoustic wave fields with a wavelength much smaller than the width of the confined microchannel is experimentally revealed in detail, using quantitative three-dimensional measurements of all three velocity components (3D3C). In Part I of this study, we focus on the fluid flow close to the center of the surface acoustic wave field, while in Part II the outer regions with strong acoustic gradients are investigated. By systematic variations of the SAW-wavelength

Identifiants

pubmed: 35482303
doi: 10.1039/d1lc01113h
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2011-2027

Auteurs

Sebastian Sachs (S)

Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, D-98684 Ilmenau, Germany. sebastian.sachs@tu-ilmenau.de.

Mostafa Baloochi (M)

Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, D-98684 Ilmenau, Germany.

Christian Cierpka (C)

Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, D-98684 Ilmenau, Germany. sebastian.sachs@tu-ilmenau.de.
Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, D-98684 Ilmenau, Germany.

Jörg König (J)

Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, D-98684 Ilmenau, Germany. sebastian.sachs@tu-ilmenau.de.

Articles similaires

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells
Sound Neural Networks, Computer Acoustics Algorithms Humans

Acoustic cognitive map-based navigation in echolocating bats.

Aya Goldshtein, Xing Chen, Eran Amichai et al.
1.00
Animals Chiroptera Echolocation Spatial Navigation Homing Behavior
Animals Robotics Algorithms Sperm Whale Vocalization, Animal

Classifications MeSH