Chemical Modification for the "Off-/On" Regulation of Enzyme Activity.

chemical protein modification chemical shells enzyme activity off/on control switchable centers

Journal

Macromolecular rapid communications
ISSN: 1521-3927
Titre abrégé: Macromol Rapid Commun
Pays: Germany
ID NLM: 9888239

Informations de publication

Date de publication:
Sep 2022
Historique:
revised: 14 04 2022
received: 28 02 2022
pubmed: 29 4 2022
medline: 24 9 2022
entrez: 28 4 2022
Statut: ppublish

Résumé

Enzymes with excellent catalytic performance play important roles in living organisms. Advances in strategies for enzyme chemical modification have enabled powerful strategies for exploring and manipulating enzyme functions and activities. Based on the development of chemical enzyme modifications, incorporating external stimuli-responsive features-for example, responsivity to light, voltage, magnetic force, pH, temperature, redox activity, and small molecules-into a target enzyme to turn "on" and "off" its activity has attracted much attention. The ability to precisely control enzyme activity using different approaches will greatly expand the chemical biology toolbox for clarification and detection of signal transduction and in vivo enzyme function and significantly promote enzyme-based disease therapy. This review summarizes the methods available for chemical enzyme modification mainly for the off-/on control of enzyme activity and particularly highlights the recent progress regarding the applications of this strategy.

Identifiants

pubmed: 35482602
doi: 10.1002/marc.202200195
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2200195

Subventions

Organisme : the National Key R&D Program of China
ID : 2018YFA0903500
Organisme : the Fundamental Research Funds for the Central Universities
ID : 2172019kfyXMPY006
Organisme : the Fundamental Research Funds for the Central Universities
ID : 2172020kfyXGYJ104

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

a) A. Baruch, D. A. Jeffery, M. Bogyo, Trends Cell Biol. 2004, 14, 29;
b) C. Wang, S. Zhang, H. Chang, Q. Zhang, Y. Cheng, Sci. Adv. 2019, 5, eaaw8922;
c) G. K. Meghwanshi, N. Kaur, S. Verma, N. K. Dabi, A. Vashishtha, P. D. Charan, P. Purohit, H. S. Bhandari, N. Bhojak, R. Kumar, Biotechnol. Appl. Biochem. 2020, 67, 586;
d) A. Yang, K. Cho, H.-S. Park, RNA Biol. 2018, 15, 427;
e) S. B. Gunnoo, A. Madder, ChemBioChem 2016, 17, 529;
f) Y.-W. Wu, R. S. Goody, J. Pept. Sci. 2010, 16, 514.
a) S. Sakamoto, I. Hamachi, Anal. Sci. 2019, 35, 5;
b) O. Boutureira, G. J. Bernardes, Chem. Rev. 2015, 115, 2174;
c) C. D. Spicer, B. G. Davis, Nat. Commun. 2014, 5, 4740;
d) E. Basle, N. Joubert, M. Pucheault, Chem. Biol. 2010, 17, 213;
e) V. Agouridas, O. E. Mahdi, O. Melnyk, J. Med. Chem. 2020, 63, 15140;
f) L. Liu, S. Li, A. Mao, G. Wang, Y. Liu, H. Ju, L. Ding, Chem. Sci. 2020, 11, 1665;
g) K. K. Khoo, I. Galleano, F. Gasparri, R. Wieneke, H. Harms, M. H. Poulsen, H. C. Chua, M. Wulf, R. Tampe, S. A. Pless, Nat. Commun. 2020, 11, 2284.
a) T. Kitamura, S. Sotokawa, D. Takahashi, K. Toshima, Chem. Commun. 2018, 54, 10614;
b) C. Wang, Q. Zhang, X. Wang, H. Chang, S. Zhang, Y. Tang, J. Xu, R. Qi, Y. Cheng, Angew. Chem., Int. Ed. 2017, 56, 6767;
c) Y. Zhao, B. Lei, M. Wang, S. Wu, W. Qi, R. Su, Z. He, J. Mater. Chem. B 2018, 6, 2444.
a) A. Myrhammar, D. Rosik, A. E. Karlstrom, Bioconjugate Chem. 2020, 31, 622;
b) A. Y. Gebreyohannes, R. Mazzei, M. Y. Marei Abdelrahim, G. Vitola, E. Porzio, G. Manco, M. Barboiu, L. Giorno, Bioconjugate Chem. 2018, 29, 2001;
c) Y. Sun, Z. Li, J. Wu, Z. Wang, Y. Dong, H. Wang, J. L. Brash, L. Yuan, H. Chen, J. Mater. Chem. B 2019, 7, 3260;
d) F. O. Rottkea, M. V. Heynea, S. Reinickea, Chem. Commun. 2020, 56, 2459;
e) T. Tian, Y. Song, J. Wang, B. Fu, Z. He, X. Xu, A. Li, X. Zhou, S. Wang, X. Zhou, J. Am. Chem. Soc. 2016, 138, 955.
a) Y. Wang, C. Wu, Biomacromolecules 2018, 19, 1804;
b) M. Kovaliov, C. Cheng, B. Cheng, S. Averick, Polym. Chem. 2018, 9, 4651.
a) W. Li, D. N. Liu, X. Geng, Z. Q. Li, R. J. Gao, Catal. Sci. Technol. 2019, 9, 2221;
b) S. Jia, W.-K. Fong, B. Graham, B. J. Boyd, Chem. Mater. 2018, 30, 2873;
c) N. Zhang, K. Mei, P. Guan, X. Hu, Y. Zhao, Small 2020, 16, 1907256;
d) T. A. Wright, R. C. Page, D. Konkolewicz, Polym. Chem. 2019, 10, 434.
a) G. E. Means, J. Food Biochem. 1998, 22, 399;
b) C. Chumsae, L. L. Zhou, Y. Shen, J. Wohlgemuth, E. Fung, R. Burton, C. Radziejewski, Z. S. Zhou, Anal. Chem. 2014, 86, 8932.
T. Tamura, I. Hamachi, J. Am. Chem. Soc. 2019, 141, 2782.
Y. Chen, G. Ke, Y. Ma, Z. Zhu, M. Liu, Y. Liu, H. Yan, C. J. Yang, J. Am. Chem. Soc. 2018, 140, 8990.
D. Y. Ng, M. Arzt, Y. Wu, S. L. Kuan, M. Lamla, T. Weil, Angew. Chem., Int. Ed. 2014, 53, 324.
S. Jung, I. Kwon, Polym. Chem. 2016, 7, 4584.
D. A. Davis, K. Dorsey, P. T. Wingfield, S. J. Stahl, J. Kaufman, H. M. Fales, R. L. Levine, Biochemistry 1996, 35, 2482.
M. S. Masri, M. Friedman, J. Protein Chem. 1988, 7, 49.
A. Bautista-Barrufet, F. López-Gallego, V. Rojas-Cervellera, C. Rovira, M. A. Pericàs, J. M. Guisán, P. Gorostiza, ACS Catal. 2014, 4, 1004.
a) S. Sato, M. Matsumura, T. Kadonosono, S. Abe, T. Ueno, H. Ueda, H. Nakamura, Bioconjugate Chem. 2020, 31, 1417;
b) J. J. Bruins, A. H. Westphal, B. Albada, K. Wagner, L. Bartels, H. Spits, W. J. H. van Berkel, F. L. van Delft, Bioconjugate Chem. 2017, 28, 1189;
c) S. Vandewalle, R. De Coen, B. G. De Geest, F. E. Du Prez, ACS Macro Lett. 2017, 6, 1368.
Y. Yu, L. K. Zhang, A. V. Buevich, G. Li, H. Tang, P. Vachal, S. L. Colletti, Z. C. Shi, J. Am. Chem. Soc. 2018, 140, 6797.
a) S. J. Tower, W. J. Hetcher, T. E. Myers, N. J. Kuehl, M. T. Taylor, J. Am. Chem. Soc. 2020, 142, 9112;
b) Y. Seki, T. Ishiyama, D. Sasaki, J. Abe, Y. Sohma, K. Oisaki, M. Kanai, J. Am. Chem. Soc. 2016, 138, 10798;
c) J.-J. Hu, P.-Y. He, Y.-M. Li, J. Pept. Sci. 2021, 27, 3286.
a) P. Shanbhogue, R. M. Hoffmann, M. V. Airola, R. Maini, D. J. Hamelin, M. Garcia-Diaz, J. E. Burke, Y. A. Hannun, J. Biol. Chem. 2019, 294, 7488;
b) H. Jiang, W. Chen, J. Wang, R. Zhang, Chin. Chem. Lett. 2022, 33, 80.
A. O. Chan, C. M. Ho, H. C. Chong, Y. C. Leung, J. S. Huang, M. K. Wong, C. M. Che, J. Am. Chem. Soc. 2012, 134, 2589.
a) R. Sangsuwan, P. Tachachartvanich, M. B. Francis, J. Am. Chem. Soc. 2019, 141, 2376;
b) B. Koo, N. S. Dolan, K. Wucherer, H. K. Munch, M. B. Francis, Biomacromolecules 2019, 20, 3933;
c) C. B. Rosen, M. B. Francis, Nat. Chem. Biol. 2017, 13, 697.
W. Wang, J. Gao, J. Org. Chem. 2020, 85, 1756.
P. Thompson, B. Bezabeh, R. Fleming, M. Pruitt, S. Mao, P. Strout, C. Chen, S. Cho, H. Zhong, H. Wu, C. Gao, N. Dimasi, Bioconjugate Chem. 2015, 26, 2085.
a) L. Wang, L. Liu, B. Dong, H. Zhao, ACS Macro Lett. 2019, 8, 1233;
b) A. R. S. Prasad, J. Ybarra, J. S. Nishimura, Biochemistry 1986, 25, 7174;
c) B. M. Janssen, W. Engelen, M. Merkx, ACS Synth. Biol. 2015, 4, 547.
T. J. Hallam, E. Wold, A. Wahl, V. V. Smider, Mol. Pharmaceutics 2015, 12, 1848.
a) L. Jakob, A. Gust, D. Grohmann, Biochem. Biophys. Rep. 2019, 17, 1;
b) K. W. Swiderska, A. Szlachcic, A. Czyrek, M. Zakrzewska, J. Otlewski, Bioorg. Med. Chem. 2017, 25, 3685;
c) P. Neumann-Staubitz, H. Neumann, Curr. Opin. Struct. Biol. 2016, 38, 119.
a) I. Kwon, S. I. Lim, Macromol. Chem. Phys. 2013, 214, 1295;
b) S. Naganathan, S. Ye, T. P. Sakmar, T. Huber, Biochemistry 2013, 52, 1028.
S. A. Pless, C. A. Ahern, Annu. Rev. Pharmacol. Toxicol. 2013, 53, 211.
C. H. Kim, J. Y. Axup, P. G. Schultz, Curr. Opin. Chem. Biol. 2013, 17, 412.
a) Y. Won, A. D. Pagar, M. D. Patil, P. E. Dawson, H. Yun, Biotechnol. Bioprocess. Eng. 2019, 24, 592;
b) K. Lang, Biochemistry 2019, 58, 2703.
a) N. Ahmed, D. V. Foss, M. H. Powdrill, J. P. Pezacki, Biochemistry 2019, 58, 3520;
b) S. Smolskaya, A. Andreev, Biomolecules 2019, 9, 255.
a) A. P. Welegedara, L. A. Adams, T. Huber, B. Graham, G. Otting, Bioconjugate Chem. 2018, 29, 2257;
b) Z. Lyu, L. Kang, Z. Y. Buuh, D. Jiang, J. C. McGuth, J. Du, H. L. Wissler, W. Cai, R. E. Wang, ACS Chem. Biol. 2018, 13, 958;
c) A. D. Pagar, Y. Won, M. D. Patil, P. E. Dawson, H. Yun, Biotechnol. Bioprocess. Eng. 2019, 24, 592.
J. Hemphill, E. K. Borchardt, K. Brown, A. Asokan, A. Deiters, J. Am. Chem. Soc. 2015, 137, 5642.
a) X. T. Zheng, Y. Choi, D. G. G. Phua, Y. N. Tan, Bioconjugate Chem. 2020, 31, 754;
b) T. Thomsen, R. Reissmann, E. Kaba, B. Engelhardt, H.-A. Klok, Biomacromolecules 2021, 22, 3416;
c) R. N. Reddi, A. Rogel, E. Resnick, R. Gabizon, P. K. Prasad, N. Gurwicz, H. Barr, Z. Shulman, N. London, J. Am. Chem. Soc. 2021, 143, 20095;
d) C. J. Welch, M. L. Talaga, P. D. Kadav, J. L. Edwards, P. Bandyopadhyay, T. K. Dam, J. Biol. Chem. 2020, 295, 223;
e) I. Bassanini, C. Galli, E. E. Ferrandi, F. Vallone, A. Andolfo, S. Romeo, Bioconjugate Chem. 2020, 31, 513.
T. Kurinomaru, K. Kuwada, S. Tomita, T. Kameda, K. Shiraki, J. Phys. Chem. B 2017, 121, 6785.
E. S. Redeker, D. T. Ta, D. Cortens, B. Billen, W. Guedens, P. Adriaensens, Bioconjugate Chem. 2013, 24, 1761.
A. Mero, T. Ishino, I. Chaiken, F. M. Veronese, G. Pasut, Pharm. Res. 2011, 28, 2412.
a) F. Qie, J. S. Basuki, X. Mulet, R. Suryadinata, Y. Y. Peng, A. V. Vashi, L. Li, X. Hao, T. Tan, T. C. Hughes, Angew. Chem., Int. Ed. 2017, 56, 966;
b) Z. Chen, R. Thiramanas, M. Schwendy, C. Xie, S. H. Parekh, V. Mailander, S. Wu, Small 2017, 13, 1700997.
W. Szymanski, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114.
a) S. Wu, J. Zhang, P. Wu, Anal. Methods 2019, 11, 5081;
b) M. Mo, D. Kong, H. Ji, D. Lin, X. Tang, Z. Yang, Y. He, L. Wu, Bioconjugate Chem. 2019, 30, 231.
a) D. D. Brauer, E. C. Hartman, D. L. V. Bader, Z. N. Merz, D. Tullman-Ercek, M. B. Francis, J. Am. Chem. Soc. 2019, 141, 3875;
b) P. Wang, S. Zhang, Q. Meng, Y. Liu, L. Shang, Z. Yin, Org. Lett. 2015, 17, 1361.
L. Wang, L. Yuan, H. Wang, X. Liu, X. Li, H. Chen, Bioconjugate Chem. 2014, 25, 1252.
J. Wang, Y. Liu, Y. Liu, S. Zheng, X. Wang, J. Zhao, F. Yang, G. Zhang, C. Wang, P. R. Chen, Nature 2019, 569, 509.
a) K. Ojima, K. Shiraiwa, K. Soga, T. Doura, M. Takato, K. Komatsu, M. Yuzaki, I. Hamachi, S. Kiyonaka, Nat. Commun. 2021, 12, 831;
b) T. Tamura, T. Ueda, T. Goto, T. Tsukidate, Y. Shapira, Y. Nishikawa, A. Fujisawa, I. Hamachi, Nat. Commun. 2018, 9, 1870;
c) K. Matsuo, Y. Nishikawa, M. Masuda, I. Hamachi, Angew. Chem., Int. Ed. 2018, 57, 659;
d) Y. Takaoka, Y. Nishikawa, Y. Hashimoto, K. Sasaki, I. Hamachi, Chem. Sci. 2015, 6, 3217;
e) S. H. Fujishima, R. Yasui, T. Miki, A. Ojida, I. Hamachi, J. Am. Chem. Soc. 2012, 134, 3961;
f) S. Tsukiji, M. Miyagawa, Y. Takaoka, T. Tamura, I. Hamachi, Nat. Chem. Biol. 2009, 5, 341.
K. Matsuo, Y. Kioi, R. Yasui, Y. Takaoka, T. Miki, S.-h. Fujishima, I. Hamachi, Chem. Sci. 2013, 4, 2573.
a) D. Zhao, R. Rajan, K. Matsumura, ACS Appl. Mater. Interfaces 2019, 11, 39459;
b) W. E. Georgianna, H. Lusic, A. L. McIver, A. Deiters, Bioconjugate Chem. 2010, 21, 1404.
S. H. Kim, K. R. Kim, D. R. Ahn, J. E. Lee, E. G. Yang, S. Y. Kim, ACS Nano 2017, 11, 9352.
M. Dubner, V. J. Cadarso, T. N. Gevrek, A. Sanyal, N. D. Spencer, C. Padeste, ACS Appl. Mater. Interfaces 2017, 9, 9245.
C. Poloni, W. Szymanski, B. L. Feringa, Chem. Commun. 2014, 50, 12645.
H. Murata, C. S. Cummings, R. R. Koepsel, A. J. Russell, Biomacromolecules 2013, 14, 1919.
K. Kuwada, T. Kurinomaru, S. Tomita, K. Shiraki, Colloid Polym. Sci. 2016, 294, 1551.
S. Mallawarachchi, V. Gejji, L. S. Sierra, H. Wang, S. Fernando, ACS Appl. Bio Mater. 2019, 2, 5676.
J. Li, C. Si, H. Sun, J. Zhu, T. Pan, S. Liu, Z. Dong, J. Xu, Q. Luo, J. Liu, Chem. Commun. 2015, 51, 9987.
Z. Guo, W. A. Johnston, J. Whitfield, P. Walden, Z. Cui, E. Wijker, S. Edwardraja, I. Retamal Lantadilla, F. Ely, C. Vickers, J. P. J. Ungerer, K. Alexandrov, J. Am. Chem. Soc. 2019, 141, 8128.
P. De, M. Li, S. R. Gondi, B. S. Sumerlin, J. Am. Chem. Soc. 2008, 130, 11288.
a) T. Shimoboji, T. Fowler, A. S. Hoffman, P. S. Stayton, Bioconjugate Chem. 2003, 14, 517;
b) T. Shimoboji, E. Larenas, T. Fowler, S. Kulkarni, A. S. Hoffman, P. S. Stayton, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 16592.
Y. Liu, X. Gao, D. Wei, Y. Ren, ChemPhotoChem 2017, 1, 393.
B. Chandramouli, D. Di Maio, G. Mancini, G. Brancato, Biochim. Biophys. Acta, Biomembr. 2016, 1858, 689.
Y. H. Tsai, S. Essig, J. R. James, K. Lang, J. W. Chin, Nat. Chem. 2015, 7, 554.
a) L. A. Abrosimova, M. V. Monakhova, A. Y. Migur, W. Wolfgang, A. Pingoud, E. A. Kubareva, T. S. Oretskaya, IUBMB Life 2013, 65, 1012;
b) T. Hienle, T. S. Zatsepin, B. Schierling, E. M. Volkov, W. Wende, A. Pingoud, E. A. Kubareva, T. S. Oretskaya, Bioconjugate Chem. 2011, 22, 1366.
J. Binschik, J. Zettler, H. D. Mootz, Angew. Chem., Int. Ed. 2011, 50, 3249.
B. Schierling, A. J. Noel, W. Wende, T. Hienle, E. Volkov, E. Kubareva, T. Oretskaya, M. Kokkinidis, A. Rompp, B. Spengler, A. Pingoud, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1361.
N. Muranaka, T. Hohsaka, M. Sisido, FEBS Lett. 2002, 510, 10.
N. Jaensch, C. Meyners, M. Muth, A. Kopranovic, O. Witt, I. Oehme, F.-J. Meyer-Almes, Redox Biol. 2019, 20, 60.
D. Moldenhauer, J. P. Fuenzalida Werner, C. A. Strassert, F. Grohn, Biomacromolecules 2019, 20, 979.
M. Reverte, I. Barvik, J.-J. Vasseur, M. Smietana, Org. Biomol. Chem. 2017, 15, 8204.
T. Pan, Y. Liu, C. Si, Y. Bai, S. Qiao, L. Zhao, J. Xu, Z. Dong, Q. Luo, J. Liu, ACS Catal. 2017, 7, 1875.
V. Lamba, F. Yabukarski, D. Herschlag, J. Am. Chem. Soc. 2017, 139, 11089.
S. J. Budiardjo, T. J. Licknack, M. B. Cory, D. Kapros, A. Roy, S. Lovell, J. Douglas, J. Karanicolas, ACS Synth. Biol. 2016, 5, 1475.
B. M. G. Janssen, W. Engelen, M. Merkx, ACS Synth. Biol. 2015, 4, 547.
M. Korbus, G. Balasubramanian, F. Mueller-Plathe, H. Kolmar, F.-J. Meyer-Almes, Biol. Chem. 2014, 395, 401.
M. Yilmaz, S. S. Gangopadhyay, P. Leavis, Z. Grabarek, K. G. Morgan, Biosci. Rep. 2013, 33, 259.
Y. Oshiba, T. Tamaki, H. Ohashi, H. Hirakawa, S. Yamaguchi, T. Nagamune, T. Yamaguchi, J. Biosci. Bioeng. 2013, 115, 639.
O. A. Sytina, D. J. Heyes, C. N. Hunter, M. T. Alexandre, I. H. M. van Stokkum, R. van Grondelle, M. L. Groot, Nature 2008, 456, 1001.
D. Wildemann, C. Schiene-Fischer, T. Aumueller, A. Bachmann, T. Kiefhaber, C. Luecke, G. Fischer, J. Am. Chem. Soc. 2007, 129, 4910.
G. D. V. Sagar, B. Gereben, I. Callebaut, J.-P. Mornon, A. Zeold, W. S. da Silva, C. Luongo, M. Dentice, S. M. Tente, B. C. G. Freitas, J. W. Harney, A. M. Zavacki, A. C. Bianco, Mol. Cell. Biol. 2007, 27, 4774.

Auteurs

Huaibin Yu (H)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.

Jiayi Feng (J)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.

Fangrui Zhong (F)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.

Yuzhou Wu (Y)

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.

Articles similaires

Calcium Carbonate Sand Powders Construction Materials Materials Testing
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Peroxynitrous Acid Animals Escherichia coli Immunotherapy Mice

Classifications MeSH