SBSN drives bladder cancer metastasis via EGFR/SRC/STAT3 signalling.


Journal

British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635

Informations de publication

Date de publication:
07 2022
Historique:
received: 15 11 2021
accepted: 11 03 2022
revised: 25 02 2022
pubmed: 29 4 2022
medline: 22 7 2022
entrez: 28 4 2022
Statut: ppublish

Résumé

Patients with metastatic bladder cancer have very poor prognosis and predictive biomarkers are urgently needed for early clinical detection and intervention. In this study, we evaluate the effect and mechanism of Suprabasin (SBSN) on bladder cancer metastasis. A tissue array was used to detect SBSN expression by immunohistochemistry. A tumour-bearing mouse model was used for metastasis evaluation in vivo. Transwell and wound-healing assays were used for in vitro evaluation of migration and invasion. Comprehensive molecular screening was achieved by western blotting, immunofluorescence, luciferase reporter assay, and ELISA. SBSN was found markedly overexpressed in bladder cancer, and indicated poor prognosis of patients. SBSN promoted invasion and metastasis of bladder cancer cells both in vivo and in vitro. The secreted SBSN exhibited identical biological function and regulation in bladder cancer metastasis, and the interaction of secreted SBSN and EGFR could play an essential role in activating the signalling in which SBSN enhanced the phosphorylation of EGFR and SRC kinase, followed with phosphorylation and nuclear location of STAT3. Our findings highlight that SBSN, and secreted SBSN, promote bladder cancer metastasis through activation of EGFR/SRC/STAT3 pathway and identify SBSN as a potential diagnostic and therapeutic target for bladder cancer.

Sections du résumé

BACKGROUND
Patients with metastatic bladder cancer have very poor prognosis and predictive biomarkers are urgently needed for early clinical detection and intervention. In this study, we evaluate the effect and mechanism of Suprabasin (SBSN) on bladder cancer metastasis.
METHODS
A tissue array was used to detect SBSN expression by immunohistochemistry. A tumour-bearing mouse model was used for metastasis evaluation in vivo. Transwell and wound-healing assays were used for in vitro evaluation of migration and invasion. Comprehensive molecular screening was achieved by western blotting, immunofluorescence, luciferase reporter assay, and ELISA.
RESULTS
SBSN was found markedly overexpressed in bladder cancer, and indicated poor prognosis of patients. SBSN promoted invasion and metastasis of bladder cancer cells both in vivo and in vitro. The secreted SBSN exhibited identical biological function and regulation in bladder cancer metastasis, and the interaction of secreted SBSN and EGFR could play an essential role in activating the signalling in which SBSN enhanced the phosphorylation of EGFR and SRC kinase, followed with phosphorylation and nuclear location of STAT3.
CONCLUSIONS
Our findings highlight that SBSN, and secreted SBSN, promote bladder cancer metastasis through activation of EGFR/SRC/STAT3 pathway and identify SBSN as a potential diagnostic and therapeutic target for bladder cancer.

Identifiants

pubmed: 35484216
doi: 10.1038/s41416-022-01794-7
pii: 10.1038/s41416-022-01794-7
pmc: PMC9296541
doi:

Substances chimiques

Antigens, Differentiation 0
suprabasin protein, mouse 0
ErbB Receptors EC 2.7.10.1
Proto-Oncogene Proteins pp60(c-src) EC 2.7.10.2
src-Family Kinases EC 2.7.10.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

211-222

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder cancer: a review. JAMA. 2020;324:1980–91.
pubmed: 33201207 doi: 10.1001/jama.2020.17598
Richters A, Aben KKH, Kiemeney L. The global burden of urinary bladder cancer: an update. World J Urol. 2020;38:1895–904.
pubmed: 31676912 doi: 10.1007/s00345-019-02984-4
Ritch CR, Velasquez MC, Kwon D, Becerra MF, Soodana-Prakash N, Atluri VS, et al. Use and validation of the AUA/SUO risk grouping for nonmuscle invasive bladder cancer in a contemporary cohort. J Urol. 2020;203:505–11.
pubmed: 31609178 doi: 10.1097/JU.0000000000000593
Shah BK, Mandal R. Survival trends in metastatic bladder cancer in the United States: a population based study. J Cancer Res Ther. 2015;11:124–8.
pubmed: 25879349 doi: 10.4103/0973-1482.140982
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9:52.
Nastaly P, Stoupiec S, Popeda M, Smentoch J, Schlomm T, Morrissey C, et al. EGFR as a stable marker of prostate cancer dissemination to bones. Br J cancer. 2020;123:1767–74.
pubmed: 32901137 pmcid: 7722745 doi: 10.1038/s41416-020-01052-8
Kaushik G, Seshacharyulu P, Rauth S, Nallasamy P, Rachagani S, Nimmakayala RK, et al. Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces pancreatic cancer metastasis. Oncogene. 2021;40:848–62.
pubmed: 33288882 doi: 10.1038/s41388-020-01564-w
Hashmi AA, Hussain ZF, Irfan M, Khan EY, Faridi N, Naqvi H, et al. Prognostic significance of epidermal growth factor receptor (EGFR) over expression in urothelial carcinoma of urinary bladder. BMC Urol. 2018;18:59.
pubmed: 29879970 pmcid: 5992678 doi: 10.1186/s12894-018-0373-0
Neal DE, Sharples L, Smith K, Fennelly J, Hall RR, Harris AL. The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer. 1990;65:1619–25.
pubmed: 2311071 doi: 10.1002/1097-0142(19900401)65:7<1619::AID-CNCR2820650728>3.0.CO;2-Q
Nguyen PL, Swanson PE, Jaszcz W, Aeppli DM, Zhang G, Singleton TP, et al. Expression of epidermal growth factor receptor in invasive transitional cell carcinoma of the urinary bladder. A multivariate survival analysis. Am J Clin Pathol. 1994;101:166–76.
pubmed: 7906919 doi: 10.1093/ajcp/101.2.166
Kim WT, Kim J, Yan C, Jeong P, Choi SY, Lee OJ, et al. S100A9 and EGFR gene signatures predict disease progression in muscle invasive bladder cancer patients after chemotherapy. Ann Oncol: Off J Eur Soc Med Oncol. 2014;25:974–9.
doi: 10.1093/annonc/mdu037
Wang A, Jiang A, Gan X, Wang Z, Huang J, Dong K, et al. EGFR-AS1 promotes bladder cancer progression by upregulating EGFR. BioMed Res Int. 2020;2020:6665974.
pubmed: 33426060 pmcid: 7781701
McConkey DJ, Choi W, Ochoa A, Siefker-Radtke A, Czerniak B, Dinney CP. Therapeutic opportunities in the intrinsic subtypes of muscle-invasive bladder cancer. Hematol Oncol Clin North Am. 2015;29:377–94.
pubmed: 25836941 doi: 10.1016/j.hoc.2014.11.003
Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene. 2000;19:2474–88.
pubmed: 10851046 doi: 10.1038/sj.onc.1203527
van Kessel KE, Zuiverloon TC, Alberts AR, Boormans JL, Zwarthoff EC. Targeted therapies in bladder cancer: an overview of in vivo research. Nat Rev Urol. 2015;12:681–94.
pubmed: 26390971 doi: 10.1038/nrurol.2015.231
Sen M, Joyce S, Panahandeh M, Li C, Thomas SM, Maxwell J, et al. Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res. 2012;18:4986–96.
pubmed: 22825581 pmcid: 3445706 doi: 10.1158/1078-0432.CCR-12-0792
Park GT, Lim SE, Jang SI, Morasso MI. Suprabasin, a novel epidermal differentiation marker and potential cornified envelope precursor. J Biol Chem. 2002;277:45195–202.
pubmed: 12228223 doi: 10.1074/jbc.M205380200
Shao C, Tan M, Bishop JA, Liu J, Bai W, Gaykalova DA, et al. Suprabasin is hypomethylated and associated with metastasis in salivary adenoid cystic carcinoma. PLoS ONE. 2012;7:e48582.
pubmed: 23144906 pmcid: 3492451 doi: 10.1371/journal.pone.0048582
Formolo CA, Williams R, Gordish-Dressman H, MacDonald TJ, Lee NH, Hathout Y. Secretome signature of invasive glioblastoma multiforme. J proteome Res. 2011;10:3149–59.
pubmed: 21574646 pmcid: 3136381 doi: 10.1021/pr200210w
Glazer CA, Smith IM, Ochs MF, Begum S, Westra W, Chang SS, et al. Integrative discovery of epigenetically derepressed cancer testis antigens in NSCLC. PLoS One. 2009;4:e8189.
pubmed: 19997593 pmcid: 2781168 doi: 10.1371/journal.pone.0008189
Zhu J, Wu G, Li Q, Gong H, Song J, Cao L, et al. Overexpression of suprabasin is associated with proliferation and tumorigenicity of esophageal squamous cell carcinoma. Sci Rep. 2016;6:21549.
pubmed: 26899563 pmcid: 4761926 doi: 10.1038/srep21549
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int. 2018;18:154.
pubmed: 30323717 pmcid: 6173857 doi: 10.1186/s12935-018-0650-8
Pribyl M, Hodny Z, Kubikova I. Suprabasin-a review. Genes (Basel). 2021;12:108.
Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18:e3000410.
pubmed: 32663219 pmcid: 7360023 doi: 10.1371/journal.pbio.3000410
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Nagy A, Munkacsy G, Gyorffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep. 2021;11:6047.
pubmed: 33723286 pmcid: 7961001 doi: 10.1038/s41598-021-84787-5
Taguchi T, Kodera Y, Oba K, Saito T, Nakagawa Y, Kawashima Y, et al. Suprabasin-derived bioactive peptides identified by plasma peptidomics. Sci Rep. 2021;11:1047.
pubmed: 33441610 pmcid: 7806982 doi: 10.1038/s41598-020-79353-4
Azare J, Leslie K, Al-Ahmadie H, Gerald W, Weinreb PH, Violette SM, et al. Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Mol Cell Biol. 2007;27:4444–53.
pubmed: 17438134 pmcid: 1900039 doi: 10.1128/MCB.02404-06
Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–7.
pubmed: 16273092 doi: 10.1038/nature04296
Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene. 2001;20:2499–513.
pubmed: 11420660 doi: 10.1038/sj.onc.1204349
Girotti MR, Pedersen M, Sanchez-Laorden B, Viros A, Turajlic S, Niculescu-Duvaz D, et al. Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov. 2013;3:158–67.
pubmed: 23242808 doi: 10.1158/2159-8290.CD-12-0386
Wang Z, Que H, Suo C, Han Z, Tao J, Huang Z, et al. Evaluation of the NMP22 BladderChek test for detecting bladder cancer: a systematic review and meta-analysis. Oncotarget. 2017;8:100648–56.
pubmed: 29246009 pmcid: 5725051 doi: 10.18632/oncotarget.22065
Guo A, Wang X, Gao L, Shi J, Sun C, Wan Z. Bladder tumour antigen (BTA stat) test compared to the urine cytology in the diagnosis of bladder cancer: A meta-analysis. Can Urol Assoc J. 2014;8:E347–352.
pubmed: 24940462 pmcid: 4039599 doi: 10.5489/cuaj.1668
Tan WS, Tan WP, Tan MY, Khetrapal P, Dong L, deWinter P, et al. Novel urinary biomarkers for the detection of bladder cancer: a systematic review. Cancer Treat Rev. 2018;69:39–52.
pubmed: 29902678 doi: 10.1016/j.ctrv.2018.05.012
Tomas A, Futter CE, Eden ER. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol. 2014;24:26–34.
pubmed: 24295852 pmcid: 3884125 doi: 10.1016/j.tcb.2013.11.002
da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49–69.
pubmed: 20887192 doi: 10.1146/annurev-pathol-011110-130206
Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer. 2013;13:663–73.
pubmed: 23949426 doi: 10.1038/nrc3559
Hosomi Y, Morita S, Sugawara S, Kato T, Fukuhara T, Gemma A, et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 Study. J Clin Oncol. 2020;38:115–23.
pubmed: 31682542 doi: 10.1200/JCO.19.01488
Tsai JS, Su PL, Yang SC, Chang CC, Lin CY, Yen YT, et al. EGFR-TKI plus bevacizumab versus EGFR-TKI monotherapy for patients with EGFR mutation-positive advanced non-small cell lung cancer-A propensity score matching analysis. J Formos Med Assoc. 2021;1729–39.
de Martino M, Zhuang D, Klatte T, Rieken M, Roupret M, Xylinas E, et al. Impact of ERBB2 mutations on in vitro sensitivity of bladder cancer to lapatinib. Cancer Biol Ther. 2014;15:1239–47.
pubmed: 24971884 pmcid: 4128866 doi: 10.4161/cbt.29687
Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11:21–8.
pubmed: 19897418 doi: 10.1016/S1470-2045(09)70311-0
Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N. Engl J Med. 2008;358:1160–74.
pubmed: 18337605 doi: 10.1056/NEJMra0707704
Rose M, Maurer A, Wirtz J, Bleilevens A, Waldmann T, Wenz M, et al. EGFR activity addiction facilitates anti-ERBB based combination treatment of squamous bladder cancer. Oncogene. 2020;39:6856–70.
Rebouissou S, Bernard-Pierrot I, de Reynies A, Lepage ML, Krucker C, Chapeaublanc E, et al. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med. 2014;6:244ra291.
doi: 10.1126/scitranslmed.3008970
Wezel F, Erben P, Gaiser T, Budjan J, von Hardenberg J, Michel MS, et al. Complete and durable remission of human epidermal growth factor receptor 2-positive metastatic urothelial carcinoma following third-line treatment with trastuzumab and gemcitabine. Urol Int. 2018;100:122–5.
pubmed: 26780095 doi: 10.1159/000443280
Li J, Wang F, Gao H, Huang S, Cai F, Sun J. ALDOLASE A regulates invasion of bladder cancer cells via E-cadherin-EGFR signaling. J Cell Biochem. 2019;120:13694–705.
pubmed: 31081974 doi: 10.1002/jcb.28642
Gargalionis AN, Karamouzis MV, Papavassiliou AG. The molecular rationale of Src inhibition in colorectal carcinomas. Int J Cancer. 2014;134:2019–29.
pubmed: 23733480 doi: 10.1002/ijc.28299
Guarino M. Src signaling in cancer invasion. J Cell Physiol. 2010;223:14–26.
pubmed: 20049846
Liu H, Bi J, Dong W, Yang M, Shi J, Jiang N, et al. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol Cancer. 2018;17:161.
pubmed: 30458784 pmcid: 6245936 doi: 10.1186/s12943-018-0908-8
Chen F, Wu J, Teng J, Li W, Zheng J, Bai J. HCRP-1 regulates cell migration, invasion and angiogenesis via Src/ FAK signaling in human prostate cancer. Int J Biol Sci. 2020;16:342–52.
pubmed: 31929761 pmcid: 6949154 doi: 10.7150/ijbs.38112
Caner A, Asik E, Ozpolat B. SRC signaling in cancer and tumor microenvironment. Adv Exp Med Biol. 2021;1270:57–71.
pubmed: 33123993 doi: 10.1007/978-3-030-47189-7_4
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.
pubmed: 29405201 pmcid: 5858971 doi: 10.1038/nrclinonc.2018.8
Wang WJ, Li CF, Chu YY, Wang YH, Hour TC, Yen CJ, et al. Inhibition of the EGFR/STAT3/CEBPD axis reverses cisplatin cross-resistance with paclitaxel in the urothelial carcinoma of the urinary bladder. Clin Cancer Res. 2017;23:503–13.
pubmed: 27435393 doi: 10.1158/1078-0432.CCR-15-1169
Tan WS, Feber A, Sarpong R, Khetrapal P, Rodney S, Jalil R, et al. Who should be investigated for haematuria? results of a contemporary prospective observational study of 3556 patients. Eur Urol. 2018;74:10–14.
pubmed: 29653885 doi: 10.1016/j.eururo.2018.03.008
Oeyen E, Hoekx L, De Wachter S, Baldewijns M, Ameye F, Mertens I. Bladder cancer diagnosis and follow-up: the current status and possible role of extracellular vesicles. Int J Mol Sci. 2019;20:821.
DeGeorge KC, Holt HR, Hodges SC. Bladder cancer: diagnosis and treatment. Am Fam Physician. 2017;96:507–14.
pubmed: 29094888
Biardeau X, Lam O, Ba V, Campeau L, Corcos J. Prospective evaluation of anxiety, pain, and embarrassment associated with cystoscopy and urodynamic testing in clinical practice. Can Urol Assoc J. 2017;11:104–10.
pubmed: 28515809 pmcid: 5434498 doi: 10.5489/cuaj.4127
Takahashi K, Asano N, Imatani A, Kondo Y, Saito M, Takeuchi A, et al. Sox2 induces tumorigenesis and angiogenesis of early-stage esophageal squamous cell carcinoma through secretion of Suprabasin. Carcinogenesis. 2020;41:1543–52.
pubmed: 32055838 doi: 10.1093/carcin/bgaa014

Auteurs

Zhongqiu Zhou (Z)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.
Meishan Women and Children's Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, 620000, Meishan, China.

Zhuojun Zhang (Z)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.

Han Chen (H)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.

Wenhao Bao (W)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.

Xiangqin Kuang (X)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.

Ping Zhou (P)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.

Zhiqing Gao (Z)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.

Difeng Li (D)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.

Xiaoyi Xie (X)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.

Chunxiao Yang (C)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.

Xuhong Chen (X)

Medical Research Center, Southern University of Science and Technology Hospital, 518055, Shenzhen, China.

Jinyuan Pan (J)

Department of Oncology, Huanggang Central Hospital of Yangtze University, 438000, Huanggang, China.

Ruiming Tang (R)

The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangzhou, China.

Zhengfu Feng (Z)

The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangzhou, China.

Lihuan Zhou (L)

The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangzhou, China.

Lan Wang (L)

Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University, 510006, Guangzhou, China.

Jianan Yang (J)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China. yangjianan@gzhmu.edu.cn.
Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China. yangjianan@gzhmu.edu.cn.

Lili Jiang (L)

Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China. jianglili@gzhmu.edu.cn.
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China. jianglili@gzhmu.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH