SBSN drives bladder cancer metastasis via EGFR/SRC/STAT3 signalling.
Animals
Antigens, Differentiation
/ metabolism
Cell Line, Tumor
Cell Movement
ErbB Receptors
/ genetics
Gene Expression Regulation, Neoplastic
Mice
Neoplasm Metastasis
Prognosis
Proto-Oncogene Proteins pp60(c-src)
/ metabolism
Signal Transduction
Urinary Bladder Neoplasms
/ pathology
src-Family Kinases
/ metabolism
Journal
British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
15
11
2021
accepted:
11
03
2022
revised:
25
02
2022
pubmed:
29
4
2022
medline:
22
7
2022
entrez:
28
4
2022
Statut:
ppublish
Résumé
Patients with metastatic bladder cancer have very poor prognosis and predictive biomarkers are urgently needed for early clinical detection and intervention. In this study, we evaluate the effect and mechanism of Suprabasin (SBSN) on bladder cancer metastasis. A tissue array was used to detect SBSN expression by immunohistochemistry. A tumour-bearing mouse model was used for metastasis evaluation in vivo. Transwell and wound-healing assays were used for in vitro evaluation of migration and invasion. Comprehensive molecular screening was achieved by western blotting, immunofluorescence, luciferase reporter assay, and ELISA. SBSN was found markedly overexpressed in bladder cancer, and indicated poor prognosis of patients. SBSN promoted invasion and metastasis of bladder cancer cells both in vivo and in vitro. The secreted SBSN exhibited identical biological function and regulation in bladder cancer metastasis, and the interaction of secreted SBSN and EGFR could play an essential role in activating the signalling in which SBSN enhanced the phosphorylation of EGFR and SRC kinase, followed with phosphorylation and nuclear location of STAT3. Our findings highlight that SBSN, and secreted SBSN, promote bladder cancer metastasis through activation of EGFR/SRC/STAT3 pathway and identify SBSN as a potential diagnostic and therapeutic target for bladder cancer.
Sections du résumé
BACKGROUND
Patients with metastatic bladder cancer have very poor prognosis and predictive biomarkers are urgently needed for early clinical detection and intervention. In this study, we evaluate the effect and mechanism of Suprabasin (SBSN) on bladder cancer metastasis.
METHODS
A tissue array was used to detect SBSN expression by immunohistochemistry. A tumour-bearing mouse model was used for metastasis evaluation in vivo. Transwell and wound-healing assays were used for in vitro evaluation of migration and invasion. Comprehensive molecular screening was achieved by western blotting, immunofluorescence, luciferase reporter assay, and ELISA.
RESULTS
SBSN was found markedly overexpressed in bladder cancer, and indicated poor prognosis of patients. SBSN promoted invasion and metastasis of bladder cancer cells both in vivo and in vitro. The secreted SBSN exhibited identical biological function and regulation in bladder cancer metastasis, and the interaction of secreted SBSN and EGFR could play an essential role in activating the signalling in which SBSN enhanced the phosphorylation of EGFR and SRC kinase, followed with phosphorylation and nuclear location of STAT3.
CONCLUSIONS
Our findings highlight that SBSN, and secreted SBSN, promote bladder cancer metastasis through activation of EGFR/SRC/STAT3 pathway and identify SBSN as a potential diagnostic and therapeutic target for bladder cancer.
Identifiants
pubmed: 35484216
doi: 10.1038/s41416-022-01794-7
pii: 10.1038/s41416-022-01794-7
pmc: PMC9296541
doi:
Substances chimiques
Antigens, Differentiation
0
suprabasin protein, mouse
0
ErbB Receptors
EC 2.7.10.1
Proto-Oncogene Proteins pp60(c-src)
EC 2.7.10.2
src-Family Kinases
EC 2.7.10.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
211-222Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder cancer: a review. JAMA. 2020;324:1980–91.
pubmed: 33201207
doi: 10.1001/jama.2020.17598
Richters A, Aben KKH, Kiemeney L. The global burden of urinary bladder cancer: an update. World J Urol. 2020;38:1895–904.
pubmed: 31676912
doi: 10.1007/s00345-019-02984-4
Ritch CR, Velasquez MC, Kwon D, Becerra MF, Soodana-Prakash N, Atluri VS, et al. Use and validation of the AUA/SUO risk grouping for nonmuscle invasive bladder cancer in a contemporary cohort. J Urol. 2020;203:505–11.
pubmed: 31609178
doi: 10.1097/JU.0000000000000593
Shah BK, Mandal R. Survival trends in metastatic bladder cancer in the United States: a population based study. J Cancer Res Ther. 2015;11:124–8.
pubmed: 25879349
doi: 10.4103/0973-1482.140982
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9:52.
Nastaly P, Stoupiec S, Popeda M, Smentoch J, Schlomm T, Morrissey C, et al. EGFR as a stable marker of prostate cancer dissemination to bones. Br J cancer. 2020;123:1767–74.
pubmed: 32901137
pmcid: 7722745
doi: 10.1038/s41416-020-01052-8
Kaushik G, Seshacharyulu P, Rauth S, Nallasamy P, Rachagani S, Nimmakayala RK, et al. Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces pancreatic cancer metastasis. Oncogene. 2021;40:848–62.
pubmed: 33288882
doi: 10.1038/s41388-020-01564-w
Hashmi AA, Hussain ZF, Irfan M, Khan EY, Faridi N, Naqvi H, et al. Prognostic significance of epidermal growth factor receptor (EGFR) over expression in urothelial carcinoma of urinary bladder. BMC Urol. 2018;18:59.
pubmed: 29879970
pmcid: 5992678
doi: 10.1186/s12894-018-0373-0
Neal DE, Sharples L, Smith K, Fennelly J, Hall RR, Harris AL. The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer. 1990;65:1619–25.
pubmed: 2311071
doi: 10.1002/1097-0142(19900401)65:7<1619::AID-CNCR2820650728>3.0.CO;2-Q
Nguyen PL, Swanson PE, Jaszcz W, Aeppli DM, Zhang G, Singleton TP, et al. Expression of epidermal growth factor receptor in invasive transitional cell carcinoma of the urinary bladder. A multivariate survival analysis. Am J Clin Pathol. 1994;101:166–76.
pubmed: 7906919
doi: 10.1093/ajcp/101.2.166
Kim WT, Kim J, Yan C, Jeong P, Choi SY, Lee OJ, et al. S100A9 and EGFR gene signatures predict disease progression in muscle invasive bladder cancer patients after chemotherapy. Ann Oncol: Off J Eur Soc Med Oncol. 2014;25:974–9.
doi: 10.1093/annonc/mdu037
Wang A, Jiang A, Gan X, Wang Z, Huang J, Dong K, et al. EGFR-AS1 promotes bladder cancer progression by upregulating EGFR. BioMed Res Int. 2020;2020:6665974.
pubmed: 33426060
pmcid: 7781701
McConkey DJ, Choi W, Ochoa A, Siefker-Radtke A, Czerniak B, Dinney CP. Therapeutic opportunities in the intrinsic subtypes of muscle-invasive bladder cancer. Hematol Oncol Clin North Am. 2015;29:377–94.
pubmed: 25836941
doi: 10.1016/j.hoc.2014.11.003
Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene. 2000;19:2474–88.
pubmed: 10851046
doi: 10.1038/sj.onc.1203527
van Kessel KE, Zuiverloon TC, Alberts AR, Boormans JL, Zwarthoff EC. Targeted therapies in bladder cancer: an overview of in vivo research. Nat Rev Urol. 2015;12:681–94.
pubmed: 26390971
doi: 10.1038/nrurol.2015.231
Sen M, Joyce S, Panahandeh M, Li C, Thomas SM, Maxwell J, et al. Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res. 2012;18:4986–96.
pubmed: 22825581
pmcid: 3445706
doi: 10.1158/1078-0432.CCR-12-0792
Park GT, Lim SE, Jang SI, Morasso MI. Suprabasin, a novel epidermal differentiation marker and potential cornified envelope precursor. J Biol Chem. 2002;277:45195–202.
pubmed: 12228223
doi: 10.1074/jbc.M205380200
Shao C, Tan M, Bishop JA, Liu J, Bai W, Gaykalova DA, et al. Suprabasin is hypomethylated and associated with metastasis in salivary adenoid cystic carcinoma. PLoS ONE. 2012;7:e48582.
pubmed: 23144906
pmcid: 3492451
doi: 10.1371/journal.pone.0048582
Formolo CA, Williams R, Gordish-Dressman H, MacDonald TJ, Lee NH, Hathout Y. Secretome signature of invasive glioblastoma multiforme. J proteome Res. 2011;10:3149–59.
pubmed: 21574646
pmcid: 3136381
doi: 10.1021/pr200210w
Glazer CA, Smith IM, Ochs MF, Begum S, Westra W, Chang SS, et al. Integrative discovery of epigenetically derepressed cancer testis antigens in NSCLC. PLoS One. 2009;4:e8189.
pubmed: 19997593
pmcid: 2781168
doi: 10.1371/journal.pone.0008189
Zhu J, Wu G, Li Q, Gong H, Song J, Cao L, et al. Overexpression of suprabasin is associated with proliferation and tumorigenicity of esophageal squamous cell carcinoma. Sci Rep. 2016;6:21549.
pubmed: 26899563
pmcid: 4761926
doi: 10.1038/srep21549
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int. 2018;18:154.
pubmed: 30323717
pmcid: 6173857
doi: 10.1186/s12935-018-0650-8
Pribyl M, Hodny Z, Kubikova I. Suprabasin-a review. Genes (Basel). 2021;12:108.
Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18:e3000410.
pubmed: 32663219
pmcid: 7360023
doi: 10.1371/journal.pbio.3000410
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Nagy A, Munkacsy G, Gyorffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep. 2021;11:6047.
pubmed: 33723286
pmcid: 7961001
doi: 10.1038/s41598-021-84787-5
Taguchi T, Kodera Y, Oba K, Saito T, Nakagawa Y, Kawashima Y, et al. Suprabasin-derived bioactive peptides identified by plasma peptidomics. Sci Rep. 2021;11:1047.
pubmed: 33441610
pmcid: 7806982
doi: 10.1038/s41598-020-79353-4
Azare J, Leslie K, Al-Ahmadie H, Gerald W, Weinreb PH, Violette SM, et al. Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Mol Cell Biol. 2007;27:4444–53.
pubmed: 17438134
pmcid: 1900039
doi: 10.1128/MCB.02404-06
Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–7.
pubmed: 16273092
doi: 10.1038/nature04296
Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene. 2001;20:2499–513.
pubmed: 11420660
doi: 10.1038/sj.onc.1204349
Girotti MR, Pedersen M, Sanchez-Laorden B, Viros A, Turajlic S, Niculescu-Duvaz D, et al. Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov. 2013;3:158–67.
pubmed: 23242808
doi: 10.1158/2159-8290.CD-12-0386
Wang Z, Que H, Suo C, Han Z, Tao J, Huang Z, et al. Evaluation of the NMP22 BladderChek test for detecting bladder cancer: a systematic review and meta-analysis. Oncotarget. 2017;8:100648–56.
pubmed: 29246009
pmcid: 5725051
doi: 10.18632/oncotarget.22065
Guo A, Wang X, Gao L, Shi J, Sun C, Wan Z. Bladder tumour antigen (BTA stat) test compared to the urine cytology in the diagnosis of bladder cancer: A meta-analysis. Can Urol Assoc J. 2014;8:E347–352.
pubmed: 24940462
pmcid: 4039599
doi: 10.5489/cuaj.1668
Tan WS, Tan WP, Tan MY, Khetrapal P, Dong L, deWinter P, et al. Novel urinary biomarkers for the detection of bladder cancer: a systematic review. Cancer Treat Rev. 2018;69:39–52.
pubmed: 29902678
doi: 10.1016/j.ctrv.2018.05.012
Tomas A, Futter CE, Eden ER. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol. 2014;24:26–34.
pubmed: 24295852
pmcid: 3884125
doi: 10.1016/j.tcb.2013.11.002
da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49–69.
pubmed: 20887192
doi: 10.1146/annurev-pathol-011110-130206
Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer. 2013;13:663–73.
pubmed: 23949426
doi: 10.1038/nrc3559
Hosomi Y, Morita S, Sugawara S, Kato T, Fukuhara T, Gemma A, et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 Study. J Clin Oncol. 2020;38:115–23.
pubmed: 31682542
doi: 10.1200/JCO.19.01488
Tsai JS, Su PL, Yang SC, Chang CC, Lin CY, Yen YT, et al. EGFR-TKI plus bevacizumab versus EGFR-TKI monotherapy for patients with EGFR mutation-positive advanced non-small cell lung cancer-A propensity score matching analysis. J Formos Med Assoc. 2021;1729–39.
de Martino M, Zhuang D, Klatte T, Rieken M, Roupret M, Xylinas E, et al. Impact of ERBB2 mutations on in vitro sensitivity of bladder cancer to lapatinib. Cancer Biol Ther. 2014;15:1239–47.
pubmed: 24971884
pmcid: 4128866
doi: 10.4161/cbt.29687
Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11:21–8.
pubmed: 19897418
doi: 10.1016/S1470-2045(09)70311-0
Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N. Engl J Med. 2008;358:1160–74.
pubmed: 18337605
doi: 10.1056/NEJMra0707704
Rose M, Maurer A, Wirtz J, Bleilevens A, Waldmann T, Wenz M, et al. EGFR activity addiction facilitates anti-ERBB based combination treatment of squamous bladder cancer. Oncogene. 2020;39:6856–70.
Rebouissou S, Bernard-Pierrot I, de Reynies A, Lepage ML, Krucker C, Chapeaublanc E, et al. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med. 2014;6:244ra291.
doi: 10.1126/scitranslmed.3008970
Wezel F, Erben P, Gaiser T, Budjan J, von Hardenberg J, Michel MS, et al. Complete and durable remission of human epidermal growth factor receptor 2-positive metastatic urothelial carcinoma following third-line treatment with trastuzumab and gemcitabine. Urol Int. 2018;100:122–5.
pubmed: 26780095
doi: 10.1159/000443280
Li J, Wang F, Gao H, Huang S, Cai F, Sun J. ALDOLASE A regulates invasion of bladder cancer cells via E-cadherin-EGFR signaling. J Cell Biochem. 2019;120:13694–705.
pubmed: 31081974
doi: 10.1002/jcb.28642
Gargalionis AN, Karamouzis MV, Papavassiliou AG. The molecular rationale of Src inhibition in colorectal carcinomas. Int J Cancer. 2014;134:2019–29.
pubmed: 23733480
doi: 10.1002/ijc.28299
Guarino M. Src signaling in cancer invasion. J Cell Physiol. 2010;223:14–26.
pubmed: 20049846
Liu H, Bi J, Dong W, Yang M, Shi J, Jiang N, et al. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol Cancer. 2018;17:161.
pubmed: 30458784
pmcid: 6245936
doi: 10.1186/s12943-018-0908-8
Chen F, Wu J, Teng J, Li W, Zheng J, Bai J. HCRP-1 regulates cell migration, invasion and angiogenesis via Src/ FAK signaling in human prostate cancer. Int J Biol Sci. 2020;16:342–52.
pubmed: 31929761
pmcid: 6949154
doi: 10.7150/ijbs.38112
Caner A, Asik E, Ozpolat B. SRC signaling in cancer and tumor microenvironment. Adv Exp Med Biol. 2021;1270:57–71.
pubmed: 33123993
doi: 10.1007/978-3-030-47189-7_4
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.
pubmed: 29405201
pmcid: 5858971
doi: 10.1038/nrclinonc.2018.8
Wang WJ, Li CF, Chu YY, Wang YH, Hour TC, Yen CJ, et al. Inhibition of the EGFR/STAT3/CEBPD axis reverses cisplatin cross-resistance with paclitaxel in the urothelial carcinoma of the urinary bladder. Clin Cancer Res. 2017;23:503–13.
pubmed: 27435393
doi: 10.1158/1078-0432.CCR-15-1169
Tan WS, Feber A, Sarpong R, Khetrapal P, Rodney S, Jalil R, et al. Who should be investigated for haematuria? results of a contemporary prospective observational study of 3556 patients. Eur Urol. 2018;74:10–14.
pubmed: 29653885
doi: 10.1016/j.eururo.2018.03.008
Oeyen E, Hoekx L, De Wachter S, Baldewijns M, Ameye F, Mertens I. Bladder cancer diagnosis and follow-up: the current status and possible role of extracellular vesicles. Int J Mol Sci. 2019;20:821.
DeGeorge KC, Holt HR, Hodges SC. Bladder cancer: diagnosis and treatment. Am Fam Physician. 2017;96:507–14.
pubmed: 29094888
Biardeau X, Lam O, Ba V, Campeau L, Corcos J. Prospective evaluation of anxiety, pain, and embarrassment associated with cystoscopy and urodynamic testing in clinical practice. Can Urol Assoc J. 2017;11:104–10.
pubmed: 28515809
pmcid: 5434498
doi: 10.5489/cuaj.4127
Takahashi K, Asano N, Imatani A, Kondo Y, Saito M, Takeuchi A, et al. Sox2 induces tumorigenesis and angiogenesis of early-stage esophageal squamous cell carcinoma through secretion of Suprabasin. Carcinogenesis. 2020;41:1543–52.
pubmed: 32055838
doi: 10.1093/carcin/bgaa014