Increased emergency cardiovascular events among under-40 population in Israel during vaccine rollout and third COVID-19 wave.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 04 2022
28 04 2022
Historique:
received:
30
11
2021
accepted:
14
04
2022
entrez:
28
4
2022
pubmed:
29
4
2022
medline:
3
5
2022
Statut:
epublish
Résumé
Cardiovascular adverse conditions are caused by coronavirus disease 2019 (COVID-19) infections and reported as side-effects of the COVID-19 vaccines. Enriching current vaccine safety surveillance systems with additional data sources may improve the understanding of COVID-19 vaccine safety. Using a unique dataset from Israel National Emergency Medical Services (EMS) from 2019 to 2021, the study aims to evaluate the association between the volume of cardiac arrest and acute coronary syndrome EMS calls in the 16-39-year-old population with potential factors including COVID-19 infection and vaccination rates. An increase of over 25% was detected in both call types during January-May 2021, compared with the years 2019-2020. Using Negative Binomial regression models, the weekly emergency call counts were significantly associated with the rates of 1st and 2nd vaccine doses administered to this age group but were not with COVID-19 infection rates. While not establishing causal relationships, the findings raise concerns regarding vaccine-induced undetected severe cardiovascular side-effects and underscore the already established causal relationship between vaccines and myocarditis, a frequent cause of unexpected cardiac arrest in young individuals. Surveillance of potential vaccine side-effects and COVID-19 outcomes should incorporate EMS and other health data to identify public health trends (e.g., increased in EMS calls), and promptly investigate potential underlying causes.
Identifiants
pubmed: 35484304
doi: 10.1038/s41598-022-10928-z
pii: 10.1038/s41598-022-10928-z
pmc: PMC9048615
doi:
Substances chimiques
COVID-19 Vaccines
0
Vaccines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6978Subventions
Organisme : CIHR
ID : Postdoctoral Fellowship
Pays : Canada
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s).
Références
Basu-Ray, I., Adeboye, A. & Soos, M. P. Cardiac manifestations of coronavirus (COVID-19). StatPearls [Internet] (2021).
Thakkar, S. et al. A systematic review of the cardiovascular manifestations and outcomes in the setting of coronavirus-19 disease. Clin. Med. Insights Cardiol. 14, 1179546820977196 (2020).
doi: 10.1177/1179546820977196
pubmed: 33312009
pmcid: 7716078
Tschöpe, C. et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat. Rev. Cardiol. 18, 169–193. https://doi.org/10.1038/s41569-020-00435-x (2021).
doi: 10.1038/s41569-020-00435-x
pubmed: 33046850
Dominguez-Erquicia, P., Dobarro, D., Raposeiras-Roubín, S., Bastos-Fernandez, G. & Iñiguez-Romo, A. Multivessel coronary thrombosis in a patient with COVID-19 pneumonia. Eur. Heart J. 41, 2132–2132 (2020).
doi: 10.1093/eurheartj/ehaa393
pubmed: 32374373
Ranard, L. S., Engel, D. J., Kirtane, A. J. & Masoumi, A. Coronary and cerebral thrombosis in a young patient after mild COVID-19 illness: A case report. Eur. Heart J. Case Rep. 4, 1 (2020).
doi: 10.1093/ehjcr/ytaa270
pubmed: 33200109
pmcid: 7543370
Vaccine Adverse Event Reporting System (VAERS). https://vaers.hhs.gov/
COVID-19 Vaccines for Children and Teens. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/adolescents.html
EudraVigilance - European database of suspected adverse drug reaction reports: How to report a side effect. https://www.adrreports.eu/en/report_side_effect.html
Dias, L. et al. Cerebral venous thrombosis after BNT162b2 mRNA SARS-CoV-2 vaccine. J. Stroke Cerebrovasc. Dis. 66, 105906 (2021).
doi: 10.1016/j.jstrokecerebrovasdis.2021.105906
Kantarcioglu, B. et al. An update on the pathogenesis of COVID-19 and the reportedly rare thrombotic events following vaccination. Clin. Appl. Thromb. Hemost. 27, 10760296211021498 (2021).
doi: 10.1177/10760296211021498
pubmed: 34060379
pmcid: 8173993
Surveillance of Myocarditis (Inflammation of the Heart Muscle) Cases Between December 2020 and May 2021 (Including). https://www.gov.il/en/departments/news/01062021-03
Vogel, G. & Couzin-Frankel, J. Israel reports link between rare cases of heart inflammation and COVID-19 vaccination in young men. https://www.sciencemag.org/news/2021/06/israel-reports-link-between-rare-cases-heart-inflammation-and-covid-19-vaccination (2021).
Wise, J. Covid-19: Should we be worried about reports of myocarditis and pericarditis after mRNA vaccines?. BMJ 373, n1635. https://doi.org/10.1136/bmj.n1635 (2021).
doi: 10.1136/bmj.n1635
pubmed: 34167952
Larson, K. F. et al. Myocarditis after BNT162b2 and mRNA-1273 vaccination. Circulation https://doi.org/10.1161/CIRCULATIONAHA.121.055913 (2021).
doi: 10.1161/CIRCULATIONAHA.121.055913
pubmed: 34930020
pmcid: 8940719
Bozkurt, B., Kamat, I. & Hotez, P. J. Myocarditis with COVID-19 mRNA vaccines. Circulation 144, 471–484 (2021).
doi: 10.1161/CIRCULATIONAHA.121.056135
pubmed: 34281357
pmcid: 8340726
Verma, A. K., Lavine, K. J. & Lin, C.-Y. Myocarditis after Covid-19 mRNA vaccination. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2109975 (2021).
doi: 10.1056/NEJMc2109975
pubmed: 34449189
pmcid: 8385564
Patone, M. et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 66, 1–13 (2021).
V-safe. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/vsafe.html
COVID-19 Vaccine safety updates Advisory Committee on Immunization Practices (ACIP) June 23, 2021. https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/03-COVID-Shimabukuro-508.pdf
Comirnaty and Pfizer-BioNTech COVID-19 Vaccine Approval Letter. https://www.fda.gov/media/151710/download
Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 384, 1412–1423. https://doi.org/10.1056/NEJMoa2101765 (2021).
doi: 10.1056/NEJMoa2101765
pubmed: 33626250
Reporting an Adverse Event During or After COVID-19 Vaccination. https://www.gov.il/en/service/covid-vaccination-side-effects-report
Bolland, M. J. et al. Differences between self-reported and verified adverse cardiovascular events in a randomised clinical trial. BMJ Open https://doi.org/10.1136/bmjopen-2012-002334 (2013).
doi: 10.1136/bmjopen-2012-002334
pubmed: 24157819
pmcid: 3808783
Althubaiti, A. Information bias in health research: definition, pitfalls, and adjustment methods. J. Multidiscip. Healthc. 9, 211 (2016).
doi: 10.2147/JMDH.S104807
pubmed: 27217764
pmcid: 4862344
Wu, S. C., Li, C. Y. & Ke, D. S. The agreement between self-reporting and clinical diagnosis for selected medical conditions among the elderly in Taiwan. Public Health 114, 137–142. https://doi.org/10.1016/s0033-3506(00)00323-1 (2000).
doi: 10.1016/s0033-3506(00)00323-1
pubmed: 10800154
Feldman, A. M. & McNamara, D. Myocarditis. N. Engl. J. Med. 343, 1388–1398 (2000).
doi: 10.1056/NEJM200011093431908
pubmed: 11070105
Daniels, C. J. et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: Results from the Big Ten COVID-19 cardiac registry. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2021.2065 (2021).
doi: 10.1001/jamacardio.2021.2065
pubmed: 34106200
pmcid: 8190704
Kern, J., Modi, R., Atalay, M. K. & Kochilas, L. K. Clinical myocarditis masquerading as acute coronary syndrome. J. Pediatr. 154, 612–615 (2009).
doi: 10.1016/j.jpeds.2008.10.018
pubmed: 19324224
Monney, P. A. et al. Acute myocarditis presenting as acute coronary syndrome: Role of early cardiac magnetic resonance in its diagnosis. Heart 97, 1312–1318 (2011).
doi: 10.1136/hrt.2010.204818
pubmed: 21106555
Muneuchi, J. et al. Myocarditis mimicking acute coronary syndrome following influenza B virus infection: A case report. Cases J. 2, 1–4 (2009).
doi: 10.4076/1757-1626-2-6809
Ali-Ahmed, F., Dalgaard, F. & Al-Khatib, S. M. Sudden cardiac death in patients with myocarditis: Evaluation, risk stratification, and management. Am. Heart J. 220, 29–40. https://doi.org/10.1016/j.ahj.2019.08.007 (2020).
doi: 10.1016/j.ahj.2019.08.007
pubmed: 31765933
Drory, Y. et al. Sudden unexpected death in persons less than 40 years of age. Am. J. Cardiol. 68, 1388–1392. https://doi.org/10.1016/0002-9149(91)90251-f (1991).
doi: 10.1016/0002-9149(91)90251-f
pubmed: 1951130
Chu, P.-L., Chang, W.-T., Chen, W.-J. & Chen, Y.-S. Acute viral myocarditis presenting as sudden cardiac arrest and refractory ventricular tachycardia. Am. J. Emerg. Med. 22, 628–629. https://doi.org/10.1016/j.ajem.2004.09.017 (2004).
doi: 10.1016/j.ajem.2004.09.017
pubmed: 15666283
Lala, A. et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J. Am. Coll. Cardiol. 76, 533–546 (2020).
doi: 10.1016/j.jacc.2020.06.007
pubmed: 32517963
pmcid: 7279721
Sun, C., Dyer, S., Salvia, J., Segal, L. & Levi, R. Worse cardiac arrest outcomes during the COVID-19 pandemic in Boston can be attributed to patient reluctance to seek care: Study examines cardiac arrest outcomes among Boston patients during the COVID-19 pandemic. Health Aff https://doi.org/10.1377/hlthaff.2021.00250 (2021).
doi: 10.1377/hlthaff.2021.00250
Vaccination data by age in Israel. https://data.gov.il/dataset/covid-19/resource/57410611-936c-49a6-ac3c-838171055b1f
COVID-19 data by sex and age groups in Israel. https://data.gov.il/dataset/covid-19/resource/89f61e3a-4866-4bbf-bcc1-9734e5fee58e
International Data Base: Israel. https://www.census.gov/data-tools/demo/idb/#/country?YR_ANIM=2020&FIPS_SINGLE=IS
Krishnamoorthy, K. & Thomson, J. A more powerful test for comparing two Poisson means. J. Stat. Plan. Inference 119, 23–35 (2004).
doi: 10.1016/S0378-3758(02)00408-1
Covid-19 Tracker: Israel. https://graphics.reuters.com/world-coronavirus-tracker-and-maps/countries-and-territories/israel/
Health Ministry allows HMOs to vaccinate recovered COVID patients. https://www.israelhayom.com/2021/03/02/health-ministry-allows-hmos-to-vaccinate-recovered-covid-patients/
Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
doi: 10.3758/BF03193146
pubmed: 17695343
Hilbe, J. M. Negative Binomial Regression (Cambridge University Press, 2011).
Gardner, W., Mulvey, E. P. & Shaw, E. C. Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychol. Bull. 118, 392 (1995).
doi: 10.1037/0033-2909.118.3.392
pubmed: 7501743
Pinheiro, L. C., Candore, G., Zaccaria, C., Slattery, J. & Arlett, P. An algorithm to detect unexpected increases in frequency of reports of adverse events in EudraVigilance. Pharmacoepidemiol. Drug Saf. 27, 38–45 (2018).
doi: 10.1002/pds.4344
pubmed: 29143393
Chan, T.-C., Teng, Y.-C. & Hwang, J.-S. Detection of influenza-like illness aberrations by directly monitoring Pearson residuals of fitted negative binomial regression models. BMC Public Health 15, 1–16 (2015).
doi: 10.1186/s12889-015-1500-4
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
doi: 10.1214/aos/1176344136
Lee, G. M., Romero, J. R. & Bell, B. P. Postapproval vaccine safety surveillance for COVID-19 vaccines in the US. JAMA 324, 1937–1938 (2020).
doi: 10.1001/jama.2020.19692
pubmed: 33064152
Chan, P. S. et al. Outcomes for out-of-hospital cardiac arrest in the United States during the coronavirus disease 2019 pandemic. JAMA Cardio. 6, 296–303 (2021).
doi: 10.1001/jamacardio.2020.6210
Uy-Evanado, A. et al. Out-of-hospital cardiac arrest response and outcomes during the COVID-19 pandemic. Clin. Electrophysiol. 7, 6–11 (2021).
doi: 10.1016/j.jacep.2020.08.010
Fardman, A. et al. Acute myocardial infarction in the Covid-19 era: Incidence, clinical characteristics and in-hospital outcomes—A multicenter registry. PLoS ONE 16, e0253524 (2021).
doi: 10.1371/journal.pone.0253524
pubmed: 34143840
pmcid: 8213163
Team, S (Robert Koch-Institut, 2021).
Public Health Scotland - COVID-19 wider impacts on the health care system. https://scotland.shinyapps.io/phs-covid-wider-impact/
Krammer, F. et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N. Engl. J. Med. 384, 1372–1374. https://doi.org/10.1056/NEJMc2101667 (2021).
doi: 10.1056/NEJMc2101667
pubmed: 33691060
Sultanian, P. et al. Cardiac arrest in COVID-19: Characteristics and outcomes of in- and out-of-hospital cardiac arrest. A report from the Swedish Registry for Cardiopulmonary Resuscitation. Eur. Heart J. 42, 1094–1106. https://doi.org/10.1093/eurheartj/ehaa1067 (2021).
doi: 10.1093/eurheartj/ehaa1067
pubmed: 33543259
pmcid: 7928992
Lowe, J. et al. Emergency department access during COVID-19: Disparities in utilization by race/ethnicity, insurance, and income. West J. Emerg. Med. 22, 552–560. https://doi.org/10.5811/westjem.2021.1.49279 (2021).
doi: 10.5811/westjem.2021.1.49279
pubmed: 34125026
pmcid: 8203020
Choi, S. et al. Myocarditis-induced sudden death after BNT162b2 mRNA COVID-19 vaccination in Korea: Case report focusing on histopathological findings. J. Korean Med. Sci. 36, 66 (2021).
doi: 10.3346/jkms.2021.36.e286
Wenger, N. K. Women and coronary heart disease: a century after Herrick: Understudied, underdiagnosed, and undertreated. Circulation 126, 604–611 (2012).
doi: 10.1161/CIRCULATIONAHA.111.086892
pubmed: 22850362
Goldberg, Y. et al. Waning immunity after the BNT162b2 vaccine in Israel. New Engl. J. Med. 385, 85 (2021).
doi: 10.1056/NEJMoa2114228
Gill, J. R., Tashjian, R. & Duncanson, E. Autopsy histopathologic cardiac findings in two adolescents following the second COVID-19 vaccine dose. Arch. Pathol. Lab. Med. 6, 66 (2022).
Kitamura, T. et al. Epidemiology and outcome of adult out-of-hospital cardiac arrest of non-cardiac origin in Osaka: a population-based study. BMJ Open 4, e006462 (2014).
doi: 10.1136/bmjopen-2014-006462
pubmed: 25534213
pmcid: 4275684
Böttiger, B. W. & Wetsch, W. A. Pulmonary embolism cardiac arrest: thrombolysis during cardiopulmonary resuscitation and improved survival. Chest 156, 1035–1036 (2019).
doi: 10.1016/j.chest.2019.08.1922
pubmed: 31812186
Laher, A. E. & Richards, G. Cardiac arrest due to pulmonary embolism. Indian Heart J. 70, 731–735 (2018).
doi: 10.1016/j.ihj.2018.01.014
pubmed: 30392514
pmcid: 6204441
Arnaout, M. et al. Out-of-hospital cardiac arrest from brain cause: epidemiology, clinical features, and outcome in a multicenter cohort. Crit. Care Med. 43, 453–460 (2015).
doi: 10.1097/CCM.0000000000000722
pubmed: 25599468