OCT4/POU5F1 is indispensable for the lineage differentiation of the inner cell mass in bovine embryos.
bovine
differentiation
embryo
pluripotency
Journal
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
revised:
10
04
2022
received:
07
11
2021
accepted:
21
04
2022
entrez:
29
4
2022
pubmed:
30
4
2022
medline:
4
5
2022
Statut:
ppublish
Résumé
The mammalian blastocyst undergoes two lineage segregations, that is, formation of the trophectoderm and subsequently differentiation of the hypoblast (HB) from the inner cell mass, leaving the epiblast (EPI) as the remaining pluripotent lineage. To clarify the expression patterns of markers specific for these lineages in bovine embryos, we analyzed day 7, 9, and 12 blastocysts completely produced in vivo by staining for OCT4, NANOG, SOX2 (EPI), and GATA6, SOX17 (HB) and identified genes specific for these developmental stages in a global transcriptomics approach. To study the role of OCT4, we generated OCT4-deficient (OCT4 KO) embryos via somatic cell nuclear transfer or in vitro fertilization. OCT4 KO embryos reached the expanded blastocyst stage by day 8 but lost NANOG and SOX17 expression, while SOX2 and GATA6 were unaffected. Blastocysts transferred to recipient cows from day 6 to 9 expanded, but the OCT4 KO phenotype was not rescued by the uterine environment. Exposure of OCT4 KO embryos to exogenous FGF4 or chimeric complementation with OCT4 intact embryos did not restore NANOG or SOX17 in OCT4-deficient cells. Our data show that OCT4 is required cell autonomously for the maintenance of pluripotency of the EPI and differentiation of the HB in bovine embryos.
Identifiants
pubmed: 35486003
doi: 10.1096/fj.202101713RRR
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e22337Informations de copyright
© 2022 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.
Références
Artus J, Chazaud C. A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cell Mol Life Sci. 2014;71:3327-3338.
Chazaud C, Yamanaka Y. Lineage specification in the mouse preimplantation embryo. Development. 2016;143:1063-1074.
Simmet K, Zakhartchenko V, Wolf E. Comparative aspects of early lineage specification events in mammalian embryos-insights from reverse genetics studies. Cell Cycle. 2018;17(14):1688-1695.
Springer C, Wolf E, Simmet K. A new toolbox in experimental embryology-alternative model organisms for studying preimplantation development. J Dev Biol. 2021;9:15.
Gerri C, Menchero S, Mahadevaiah SK, Turner JM, Niakan KK. Human embryogenesis: a comparative perspective. Annu Rev Cell Dev Biol. 2020;36:411-440.
Frum T, Ralston A. Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet. 2015;31:402-410.
Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell. 2013;25:610-622.
Le Bin GC, Muñoz-Descalzo S, Kurowski A, et al. Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst. Development. 2014;141:1001-1010.
Simmet K, Zakhartchenko V, Philippou-Massier J, Blum H, Klymiuk N, Wolf E. OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proc Natl Acad Sci USA. 2018;115:2770-2775.
Canizo JR, Rivolta AEY, Echegaray CV, et al. A dose-dependent response to MEK inhibition determines hypoblast fate in bovine embryos. BMC Dev Biol. 2019;19:13.
Bernardo AS, Jouneau A, Marks H, et al. Mammalian embryo comparison identifies novel pluripotency genes associated with the naïve or primed state. Biol Open. 2018;7:bio033282. 10.1242/bio.033282
Charpigny G, Marquant-Le Guienne B, Richard C, et al. PGE2 supplementation of oocyte culture media improves the developmental and cryotolerance performance of bovine blastocysts derived from a serum-free in vitro production system, mirroring the inner cell mass transcriptome. Front Cell Dev Biol. 2021;9:672948.
van Leeuwen J, Berg DK, Pfeffer PL. Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos. PLoS One. 2015;10:e0129787.
Pfeffer PL, Smith CS, Maclean P, Berg DK. Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation. Zygote. 2017;25:265-278.
Papanayotou C, Collignon J. Activin/Nodal signalling before implantation: setting the stage for embryo patterning. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130539.
Hill CS. Spatial and temporal control of NODAL signaling. Curr Opin Cell Biol. 2018;51:50-57.
Molè MA, Coorens THH, Shahbazi MN, et al. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat Commun. 2021;12:3679.
Rosen BD, Bickhart DM, Schnabel RD, et al. De novo assembly of the cattle reference genome with single-molecule sequencing. GigaScience. 2020;9. 10.1093/gigascience/giaa021
Daigneault BW, Rajput S, Smith GW, Ross PJ. Embryonic POU5F1 is required for expanded bovine blastocyst formation. Sci Rep. 2018;8:7753.
Schiffmacher AT, Keefer CL. CDX2 regulates multiple trophoblast genes in bovine trophectoderm CT-1 cells. Mol Reprod Dev. 2013;80:826-839.
Fogarty NM, McCarthy A, Snijders KE, et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature. 2017;550:67.
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281-2308.
Khan DR, Dubé D, Gall L, et al. Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo. PLoS One. 2012;7:e34110.
Goissis MD, Cibelli JB. Functional characterization of SOX2 in bovine preimplantation embryos. Biol Reprod. 2014;90(2):30.
Kuijk EW, van Tol LT, Van de Velde H, et al. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development. 2012;139:871-882.
Ramos-Ibeas P, Lamas-Toranzo I, Martínez-Moro Á, et al. Embryonic disc formation following post-hatching bovine embryo development in vitro. Reproduction. 2020;160:579-589.
Kohri N, Akizawa H, Iisaka S, et al. Trophectoderm regeneration to support full-term development in the inner cell mass isolated from bovine blastocyst. J Biol Chem. 2019;294:19209-19223.
Machado GM, Ferreira AR, Pivato I, et al. Post-hatching development of in vitro bovine embryos from day 7 to 14 in vivo versus in vitro. Mol Reprod Dev. 2013;80:936-947.
Velásquez A, Veraguas D, Cabezas J, Manríquez J, Castro F, Rodríguez-Alvarez L. The expression level of SOX2 at the blastocyst stage regulates the developmental capacity of bovine embryos up to day-13 of in vitro culture. Zygote. 2019;27:398-404.
van Leeuwen J, Rawson P, Berg DK, Wells DN, Pfeffer PL. On the enigmatic disappearance of Rauber’s layer. Proc Natl Acad Sci USA. 2020;117:16409-16417.
Cagnone G, Sirard M-A. The embryonic stress response to in vitro culture: insight from genomic analysis. Reproduction. 2016;152:R247-R261.
Springer C, Zakhartchenko V, Wolf E, Simmet K. Hypoblast formation in bovine embryos does not depend on NANOG. Cells. 2021;10:2232.
Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379-391.
Reichenbach M, Lim T, Reichenbach H-D, et al. Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology. Transgenic Res. 2010;19:549-556.
Klein C, Bauersachs S, Ulbrich SE, et al. Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Biol Reprod. 2006;74:253-264.
Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics. 2015;51:11.14.11-11.14.19. 10.1002/0471250953.bi1114s51
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Babicki S, Arndt D, Marcu A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147-W153.
Bauersachs S, Ulbrich SE, Zakhartchenko V, et al. The endometrium responds differently to cloned versus fertilized embryos. Proc Natl Acad Sci USA. 2009;106:5681-5686.
Simmet K, Reichenbach M, Reichenbach H-D, Wolf E. Phytohemagglutinin facilitates the aggregation of blastomere pairs from day 5 donor embryos with day 4 host embryos for chimeric bovine embryo multiplication. Theriogenology. 2015;84:1603-1610.
Messinger SM, Albertini DF. Centrosome and microtubule dynamics during meiotic progression in the mouse oocyte. J Cell Sci. 1991;100:289-298.
Wuensch A, Habermann FA, Kurosaka S, et al. Quantitative monitoring of pluripotency gene activation after somatic cloning in cattle. Biol Reprod. 2007;76:983-991.
de Chaumont F, Dallongeville S, Chenouard N, et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods. 2012;9:690-696.
Mutterer J, Zinck E. Quick-and-clean article figures with FigureJ. J Microsc. 2013;252:89-91.
Vochozkova P, Simmet K, Jemiller EM, Wunsch A, Klymiuk N. Gene editing in primary cells of cattle and pig. Methods Mol Biol. 2019;1961:271-289.
Hedegaard C, Kjaer-Sorensen K, Madsen LB, et al. Porcine synapsin 1: SYN1 gene analysis and functional characterization of the promoter. FEBS Open Bio. 2013;3:411-420.