Deep learning-based plane pose regression in obstetric ultrasound.
Deep learning
Fetal ultrasound
Pose regression
Journal
International journal of computer assisted radiology and surgery
ISSN: 1861-6429
Titre abrégé: Int J Comput Assist Radiol Surg
Pays: Germany
ID NLM: 101499225
Informations de publication
Date de publication:
May 2022
May 2022
Historique:
received:
08
03
2022
accepted:
10
03
2022
pubmed:
1
5
2022
medline:
19
5
2022
entrez:
30
4
2022
Statut:
ppublish
Résumé
In obstetric ultrasound (US) scanning, the learner's ability to mentally build a three-dimensional (3D) map of the fetus from a two-dimensional (2D) US image represents a major challenge in skill acquisition. We aim to build a US plane localisation system for 3D visualisation, training, and guidance without integrating additional sensors. We propose a regression convolutional neural network (CNN) using image features to estimate the six-dimensional pose of arbitrarily oriented US planes relative to the fetal brain centre. The network was trained on synthetic images acquired from phantom 3D US volumes and fine-tuned on real scans. Training data was generated by slicing US volumes into imaging planes in Unity at random coordinates and more densely around the standard transventricular (TV) plane. With phantom data, the median errors are 0.90 mm/1.17[Formula: see text] and 0.44 mm/1.21[Formula: see text] for random planes and planes close to the TV one, respectively. With real data, using a different fetus with the same gestational age (GA), these errors are 11.84 mm/25.17[Formula: see text]. The average inference time is 2.97 ms per plane. The proposed network reliably localises US planes within the fetal brain in phantom data and successfully generalises pose regression for an unseen fetal brain from a similar GA as in training. Future development will expand the prediction to volumes of the whole fetus and assess its potential for vision-based, freehand US-assisted navigation when acquiring standard fetal planes.
Identifiants
pubmed: 35489005
doi: 10.1007/s11548-022-02609-z
pii: 10.1007/s11548-022-02609-z
pmc: PMC9110476
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
833-839Subventions
Organisme : Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS)
ID : 203145/Z/16/Z
Organisme : Engineering and Physical Sciences Research Council
ID : EP/P027938/1, EP/R004080/1, EP/P012841/1
Informations de copyright
© 2022. The Author(s).
Références
Ultrasound Obstet Gynecol. 2011 Dec;38(6):681-7
pubmed: 22411446
Med Image Comput Comput Assist Interv. 2018;2018:563-571
pubmed: 34095901
Int J Comput Assist Radiol Surg. 2009 Jun;4(4):391-7
pubmed: 20033586
Med Phys. 1994 Nov;21(11):1749-60
pubmed: 7891637
Am J Obstet Gynecol. 1985 Feb 1;151(3):333-7
pubmed: 3881966
IEEE Trans Biomed Eng. 2016 Jul;63(7):1505-16
pubmed: 26552069
J Ultrasound Med. 2016 Jan;35(1):183-8
pubmed: 26679204
Med Image Anal. 2018 May;46:1-14
pubmed: 29499436
Ultrasound Obstet Gynecol. 2011 Jan;37(1):116-26
pubmed: 20842655
IEEE Trans Med Imaging. 2019 Feb;38(2):470-481
pubmed: 30138909
IEEE Trans Med Imaging. 2018 Aug;37(8):1737-1750
pubmed: 29994453
IEEE Trans Med Imaging. 2016 May;35(5):1352-1363
pubmed: 26829785
Ultrasound Obstet Gynecol. 2010 Dec;36(6):700-8
pubmed: 20521241