Unveiling molecular interactions that stabilize bacterial adhesion pili.


Journal

Biophysical journal
ISSN: 1542-0086
Titre abrégé: Biophys J
Pays: United States
ID NLM: 0370626

Informations de publication

Date de publication:
07 06 2022
Historique:
received: 20 01 2022
revised: 09 03 2022
accepted: 27 04 2022
pubmed: 3 5 2022
medline: 11 6 2022
entrez: 2 5 2022
Statut: ppublish

Résumé

Adhesion pili assembled by the chaperone-usher pathway are superelastic helical filaments on the surface of bacteria, optimized for attachment to target cells. Here, we investigate the biophysical function and structural interactions that stabilize P pili from uropathogenic bacteria. Using optical tweezers, we measure P pilus subunit-subunit interaction dynamics and show that pilus compliance is contour-length dependent. Atomic details of subunit-subunit interactions of pili under tension are shown using steered molecular dynamics (sMD) simulations. sMD results also indicate that the N-terminal "staple" region of P pili, which provides interactions with pilins that are four and five subunits away, significantly stabilizes the helical filament structure. These data are consistent with previous structural data, and suggest that more layer-to-layer interactions could compensate for the lack of a staple in type 1 pili. This study informs our understanding of essential structural and dynamic features of adhesion pili, supporting the hypothesis that the function of pili is critically dependent on their structure and biophysical properties.

Identifiants

pubmed: 35491503
pii: S0006-3495(22)00364-2
doi: 10.1016/j.bpj.2022.04.036
pmc: PMC9247471
pii:
doi:

Substances chimiques

Escherichia coli Proteins 0
Molecular Chaperones 0
Fimbriae Proteins 147680-16-8

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2096-2106

Informations de copyright

Copyright © 2022 Biophysical Society. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of interests The authors declare no competing interests.

Références

Kidney Int. 2007 Jul;72(1):19-25
pubmed: 17396114
Eur Biophys J. 2008 Apr;37(4):381-91
pubmed: 17926029
Opt Lett. 2018 May 1;43(9):1990-1993
pubmed: 29714728
Eur Biophys J. 2012 Jun;41(6):551-60
pubmed: 22562139
Biophys J. 2006 Nov 15;91(10):3848-56
pubmed: 16950852
Chemphyschem. 2008 Feb 1;9(2):221-35
pubmed: 18181116
Int J Med Microbiol. 2005 Oct;295(6-7):487-502
pubmed: 16238023
J Bacteriol. 2011 Apr;193(7):1718-25
pubmed: 21239584
PLoS One. 2013 Jun 14;8(6):e65563
pubmed: 23799025
Eur Biophys J. 2010 Jul;39(8):1105-15
pubmed: 19885656
Biophys J. 1998 Jan;74(1):623-32
pubmed: 9449363
Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11889-93
pubmed: 7991552
Cell. 2016 Jan 14;164(1-2):269-278
pubmed: 26724865
Angew Chem Int Ed Engl. 2015 Sep 28;54(40):11691-5
pubmed: 26267365
Nature. 1995 Jan 12;373(6510):164-7
pubmed: 7816100
ACS Nano. 2013 Apr 23;7(4):3685-97
pubmed: 23531039
J Mol Biol. 2012 Feb 3;415(5):918-28
pubmed: 22178477
Curr Opin Microbiol. 1998 Apr;1(2):223-31
pubmed: 10066482
PLoS One. 2016 Mar 24;11(3):e0152053
pubmed: 27010408
IUCrJ. 2019 Jul 09;6(Pt 5):815-821
pubmed: 31576215
Eur Biophys J. 2011 Mar;40(3):305-16
pubmed: 21161524
Proc Natl Acad Sci U S A. 2021 May 25;118(21):
pubmed: 34011607
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9861-6
pubmed: 16782819
Biophys J. 2004 Dec;87(6):4271-83
pubmed: 15377509
Biophys J. 2007 Nov 1;93(9):3008-14
pubmed: 17675342
EMBO J. 1997 Nov 3;16(21):6394-406
pubmed: 9351822
Biophys J. 2006 Mar 1;90(5):1521-34
pubmed: 16361334
Mol Microbiol. 2015 Jan;95(1):116-26
pubmed: 25355550
Science. 1999 Aug 13;285(5430):1061-6
pubmed: 10446051
Cell. 1988 Jan 29;52(2):197-206
pubmed: 2449283
Cell. 2002 Jun 28;109(7):913-23
pubmed: 12110187
Biophys J. 2015 Jul 7;109(1):49-56
pubmed: 26153701
Eur Biophys J. 2008 Feb;37(2):111-20
pubmed: 17554533
Structure. 2017 Dec 5;25(12):1829-1838.e4
pubmed: 29129382
Elife. 2018 Jan 18;7:
pubmed: 29345620
Infect Immun. 2008 Feb;76(2):771-80
pubmed: 18039830
Chemphyschem. 2009 Jul 13;10(9-10):1533-40
pubmed: 19565578
Biochim Biophys Acta. 2004 Nov 11;1694(1-3):259-67
pubmed: 15546670
Nano Lett. 2021 Apr 14;21(7):3075-3082
pubmed: 33754731
Phys Biol. 2015 Sep 02;12(5):056006
pubmed: 26331992
Cell Host Microbe. 2008 Oct 16;4(4):314-23
pubmed: 18854236

Auteurs

Tobias Dahlberg (T)

Department of Physics, Umeå University, Umeå, Sweden.

Joseph L Baker (JL)

Department of Chemistry, The College of New Jersey, Ewing, New Jersey.

Esther Bullitt (E)

Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts. Electronic address: bullitt@bu.edu.

Magnus Andersson (M)

Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden. Electronic address: magnus.andersson@umu.se.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils.

Philipp Huettemann, Pavithra Mahadevan, Justine Lempart et al.
1.00
Polyphosphates alpha-Synuclein Humans Amyloid Molecular Dynamics Simulation

Classifications MeSH