Relationship Between Maximal Left Ventricular Wall Thickness and Sudden Cardiac Death in Childhood Onset Hypertrophic Cardiomyopathy.
adult
child
death, sudden
humans
hypertrophic cardiomyopathy
Journal
Circulation. Arrhythmia and electrophysiology
ISSN: 1941-3084
Titre abrégé: Circ Arrhythm Electrophysiol
Pays: United States
ID NLM: 101474365
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
pubmed:
3
5
2022
medline:
20
5
2022
entrez:
2
5
2022
Statut:
ppublish
Résumé
Maximal left ventricular wall thickness (MLVWT) is a risk factor for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM). In adults, the severity of left ventricular hypertrophy has a nonlinear relationship with SCD, but it is not known whether the same complex relationship is seen in childhood. The aim of this study was to describe the relationship between left ventricular hypertrophy and SCD risk in a large international pediatric HCM cohort. The study cohort comprised 1075 children (mean age, 10.2 years [±4.4]) diagnosed with HCM (1-16 years) from the International Paediatric Hypertrophic Cardiomyopathy Consortium. Anonymized, noninvasive clinical data were collected from baseline evaluation and follow-up, and 5-year estimated SCD risk was calculated (HCM Risk-Kids). MLVWT In children with HCM, an inverted U-shaped relationship exists between left ventricular hypertrophy and estimated SCD risk. The presence of additional risk factors has a summative effect on risk. While MLVWT is important for risk stratification, it should not be used either as a binary variable or in isolation to guide implantable cardioverter defibrillator implantation decisions in children with HCM.
Sections du résumé
BACKGROUND
Maximal left ventricular wall thickness (MLVWT) is a risk factor for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM). In adults, the severity of left ventricular hypertrophy has a nonlinear relationship with SCD, but it is not known whether the same complex relationship is seen in childhood. The aim of this study was to describe the relationship between left ventricular hypertrophy and SCD risk in a large international pediatric HCM cohort.
METHODS
The study cohort comprised 1075 children (mean age, 10.2 years [±4.4]) diagnosed with HCM (1-16 years) from the International Paediatric Hypertrophic Cardiomyopathy Consortium. Anonymized, noninvasive clinical data were collected from baseline evaluation and follow-up, and 5-year estimated SCD risk was calculated (HCM Risk-Kids).
RESULTS
MLVWT
CONCLUSIONS
In children with HCM, an inverted U-shaped relationship exists between left ventricular hypertrophy and estimated SCD risk. The presence of additional risk factors has a summative effect on risk. While MLVWT is important for risk stratification, it should not be used either as a binary variable or in isolation to guide implantable cardioverter defibrillator implantation decisions in children with HCM.
Identifiants
pubmed: 35491873
doi: 10.1161/CIRCEP.121.010075
pmc: PMC7612749
mid: EMS143917
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e010075Subventions
Organisme : British Heart Foundation
ID : FS/16/72/32270
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T024062/1
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Références
Pediatr Cardiol. 2016 Mar;37(3):448-58
pubmed: 26526335
Stat Med. 2011 Feb 20;30(4):377-99
pubmed: 21225900
Circulation. 2018 Jul 3;138(1):29-36
pubmed: 29490994
Heart Rhythm. 2019 Oct;16(10):1462-1467
pubmed: 31026510
Pediatr Cardiol. 2012 Dec;33(8):1295-300
pubmed: 22476605
Pediatr Cardiol. 2011 Dec;32(8):1096-105
pubmed: 21487794
Circ Cardiovasc Imaging. 2017 Nov;10(11):
pubmed: 29138232
Europace. 2019 Oct 1;21(10):1559-1565
pubmed: 31155643
Eur Heart J. 2014 Oct 14;35(39):2733-79
pubmed: 25173338
Circulation. 2020 Jul 21;142(3):217-229
pubmed: 32418493
Circulation. 2005 Aug 30;112(9):1332-8
pubmed: 16116056
J Am Coll Cardiol. 2013 Apr 9;61(14):1527-35
pubmed: 23500286
Circ Arrhythm Electrophysiol. 2016 Jun;9(6):
pubmed: 27217341
Lancet. 2001 Feb 10;357(9254):420-4
pubmed: 11273061
Circulation. 2007 Feb 13;115(6):773-81
pubmed: 17261650
J Am Coll Cardiol. 2000 Dec;36(7):2212-8
pubmed: 11127463
Lancet. 2013 Dec 7;382(9908):1889-97
pubmed: 24011547
N Engl J Med. 2000 Jun 15;342(24):1778-85
pubmed: 10853000
J Am Coll Cardiol. 2015 Jun 2;65(21):2302-10
pubmed: 26022819
Circulation. 2004 Apr 13;109(14):1756-62
pubmed: 15023880
Eur J Prev Cardiol. 2017 Jul;24(11):1220-1230
pubmed: 28482693
Stat Med. 1996 Jul 15;15(13):1325-32
pubmed: 8841644
J Am Coll Cardiol. 2009 Jul 14;54(3):250-4
pubmed: 19589438
Circulation. 2019 Jul 16;140(3):184-192
pubmed: 31006259
N Engl J Med. 1986 Sep 4;315(10):610-4
pubmed: 2942774
Eur Heart J. 2019 Dec 1;40(45):3672-3681
pubmed: 31170284
Circulation. 2001 Sep 18;104(12):1380-4
pubmed: 11560853
Eur Heart J. 2019 Mar 21;40(12):986-993
pubmed: 30535072
Cardiol Young. 2005 Dec;15(6):632-42
pubmed: 16297259
Circ Cardiovasc Genet. 2012 Feb 1;5(1):10-7
pubmed: 22144547
Eur Heart J. 2014 Aug 7;35(30):2010-20
pubmed: 24126876
Circulation. 2020 Dec 22;142(25):e533-e557
pubmed: 33215938
Eur Heart J. 2021 May 21;42(20):1988-1996
pubmed: 33769460
JAMA Cardiol. 2019 Sep 1;4(9):918-927
pubmed: 31411652
J Thorac Cardiovasc Surg. 2011 Dec;142(6):e153-203
pubmed: 22093723
Cardiol Young. 2014 Aug;24(4):702-8
pubmed: 23895893