Calcium acts as a central player in melatonin antitumor activity in sarcoma cells.


Journal

Cellular oncology (Dordrecht)
ISSN: 2211-3436
Titre abrégé: Cell Oncol (Dordr)
Pays: Netherlands
ID NLM: 101552938

Informations de publication

Date de publication:
Jun 2022
Historique:
accepted: 08 04 2022
pubmed: 3 5 2022
medline: 15 6 2022
entrez: 2 5 2022
Statut: ppublish

Résumé

Chondrosarcoma and osteosarcoma are the most frequently occurring bone cancers. Although surgery and chemotherapy are currently clinically applied, improved treatment options are urgently needed. Melatonin is known to inhibit cell proliferation in both tumor types. Although the underlying mechanisms are not clear yet, calcium homeostasis has been reported to be a key factor in cancer biology. Here, we set out to investigate whether regulation of calcium by this indolamine may be involved in its antitumor effect. Cell viability was measured using a MTT assay and flow cytometry was used to measure levels of cytosolic calcium, intracellular oxidants, mitochondrial membrane potential and cell cycle progression. Mitochondrial calcium was analyzed by fluorimetry. Cell migration was determined using a scratch wound-healing assay. Western blot analysis was used to assess the expression of proteins related to cell cycle progression, epithelial to mesenchymal transition (EMT), Ac-CoA synthesis and intracellular signaling pathways. We found that melatonin decreases cytosolic and mitochondrial Ca Our data indicate that regulation of calcium homeostasis is a key factor in the inhibition of cell proliferation and migration by melatonin. This effect should be taken into consideration in combined therapies with traditional or new antitumor compounds, since it may circumvent therapy resistance.

Identifiants

pubmed: 35499815
doi: 10.1007/s13402-022-00674-9
pii: 10.1007/s13402-022-00674-9
pmc: PMC9187547
doi:

Substances chimiques

Melatonin JL5DK93RCL
Calcium SY7Q814VUP

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

415-428

Informations de copyright

© 2022. The Author(s).

Références

S.S. Shemesh, J.D. Acevedo-Nieves, J. Pretell-Mazzini, Treatment strategies for central low-grade chondrosarcoma of long bones: A systematic review of the literature and meta-analysis. Musculoskelet. Surg. 102, 95 (2018)
pubmed: 28986742 doi: 10.1007/s12306-017-0507-7
R. Rathore, B.A. Van Tine, Pathogenesis and current treatment of osteosarcoma: Perspectives for future therapies. J. Clin. Med. 10, 1182 (2021)
pubmed: 33809018 pmcid: 8000603 doi: 10.3390/jcm10061182
F.M. Speetjens, Y. De Jong, H. Gelderblom, J.V.M.G. Boveé, Molecular oncogenesis of chondrosarcoma: Impact for targeted treatment. Curr. Opin. Oncol. 28, 314 (2016)
pubmed: 27166664 doi: 10.1097/CCO.0000000000000300
J.G. van Oosterwijk, J.K. Anninga, H. Gelderblom, A.M. Cleton-Jansen, J.V.M.G. Bovée, Update on targets and novel treatment options for high-grade osteosarcoma and chondrosarcoma. Hematol. Oncol. Clin. North Am. 27, 1021 (2013)
pubmed: 24093174 doi: 10.1016/j.hoc.2013.07.012
N. Déliot, B. Constantin, Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration. Biochim. Biophys. Acta - Biomembr. 1848, 2512 (2015)
doi: 10.1016/j.bbamem.2015.06.009
A. Sharma, R.C. Elble, From Orai to E-Cadherin: Subversion of calcium trafficking in cancer to drive proliferation, anoikis-resistance, and metastasis. Biomedicines 8, 1 (2020)
N. Hempel, M. Trebak, Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 63, 70 (2017)
pubmed: 28143649 pmcid: 5466514 doi: 10.1016/j.ceca.2017.01.007
J.N. Moloney, T.G. Cotter, ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50 (2018)
pubmed: 28587975 doi: 10.1016/j.semcdb.2017.05.023
I.S. Harris, G.M. DeNicola, The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 30, 440 (2020)
pubmed: 32303435 doi: 10.1016/j.tcb.2020.03.002
S.M. Todorovic, V. Jevtovic-Todorovic, Redox regulation of neuronal voltage-gated calcium channels. Antioxidants Redox Signal. 21, 880 (2014)
doi: 10.1089/ars.2013.5610
A. Zaidi, Plasma Membrane Ca 2+ -ATPases: Targets of oxidative stress in brain aging and neurodegeneration. World J. Biol. Chem. 1, 271 (2010)
pubmed: 21537484 pmcid: 3083975 doi: 10.4331/wjbc.v1.i9.271
Y. Fan, T. Simmen, Mechanistic connections between endoplasmic reticulum (ER) redox control and mitochondrial metabolism. Cells 8, 1071 (2019)
pmcid: 6769559 doi: 10.3390/cells8091071
A. Görlach, K. Bertram, S. Hudecova, O. Krizanova, Calcium and ROS: A mutual interplay. Redox Biol. 6, 260 (2015)
pubmed: 26296072 pmcid: 4556774 doi: 10.1016/j.redox.2015.08.010
D. Adiga, R. Radhakrishnan, S. Chakrabarty, P. Kumar, S.P. Kabekkodu, The role of calcium signaling in regulation of epithelial-mesenchymal transition. Cells Tissues Organs 211, 134 (2020)
pubmed: 33316804 doi: 10.1159/000512277
J.P. Their, Epithelial-mesenchymal transitions in tumor progression. Nat. Rev. Cancer 2, 442 (2002)
doi: 10.1038/nrc822
C. Rodriguez, J.C. Mayo, R.M. Sainz, I. Antolín, F. Herrera, V. Martín, R.J. Reiter, Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res. 36, 1 (2004)
pubmed: 14675124 doi: 10.1046/j.1600-079X.2003.00092.x
D.X. Tan, B. Pöeggeler, R.J. Reiter, L.D. Chen, S. Chen, M.C. Lucien, L.R. Barlow-Walden, The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett. 70, 65 (1993)
pubmed: 8330303 doi: 10.1016/0304-3835(93)90076-L
A. Galano, D.X. Tan, R.J. Reiter, On the free radical scavenging activities of melatonin’s metabolites. AFMK and AMK. J. Pineal Res. 54, 245 (2013)
pubmed: 22998574
G. García-Santos, I. Antolín, F. Herrera, V. Martín, J. Rodriguez-Blanco, M.D.P. Carrera, C. Rodriguez, Melatonin induces apoptosis in human neuroblastoma cancer cells. J. Pineal Res. 41, 130 (2006)
pubmed: 16879318 doi: 10.1111/j.1600-079X.2006.00342.x
S. Casado-Zapico, V. Martín, G. García-Santos, J. Rodríguez-Blanco, A.M. Sánchez-Sánchez, E. Luño, C. Suárez, J.M. García-Pedrero, S.T. Menendez, I. Antolín, C. Rodriguez, Regulation of the expression of death receptors and their ligands by melatonin in haematological cancer cell lines and in leukaemia cells from patients. J. Pineal Res. 50, 345 (2011)
pubmed: 21392090 doi: 10.1111/j.1600-079X.2010.00850.x
C. Rodriguez, V. Martín, F. Herrera, G. García-Santos, J. Rodriguez-Blanco, S. Casado-Zapico, A.M. Sánchez-Sánchez, S. Suárez, N. Puente-Moncada, M.J. Anítua, I. Antolín, Mechanisms involved in the pro-apoptotic effect ofmMelatonin in cancer cells. Int. J. Mol. Sci. 14, 6597 (2013)
pubmed: 23528889 pmcid: 3645656 doi: 10.3390/ijms14046597
Y. Liao, Y. Gao, A. Chang, Z. Li, H. Wang, J. Cao, W. Gu, R. Tang, Melatonin synergizes BRAF-targeting agent dabrafenib for the treatment of anaplastic thyroid cancer by inhibiting AKT/HTERT signalling. J. Cell. Mol. Med. 24, 12119 (2020)
pubmed: 32935463 pmcid: 7579709 doi: 10.1111/jcmm.15854
Y.T. Chen, C.R. Huang, C. Lo Chang, J.Y. Chiang, C.W. Luo, H.H. Chen, H.K. Yip, Jagged2 progressively increased expression from stage i to Iii of bladder cancer and melatonin-mediated downregulation of Notch/Jagged2 suppresses the bladder tumorigenesis via inhibiting PI3K/AKT/MTOR/MMPs signaling. Int. J. Biol. Sci. 16, 2648 (2020)
pubmed: 32792862 pmcid: 7415428 doi: 10.7150/ijbs.48358
R. Liu, H. L. Wang, M. J. Deng, X. J. Wen, Y. Y. Mo, F. M. Chen, C. L. Zou, W. F. Duan, L. Li, and X. Nie, Melatonin inhibits reactive oxygen species-driven proliferation, epithelial-mesenchymal transition, and vasculogenic mimicry in oral cancer. Oxid. Med. Cell. Longev. 2018, (2018).
B. Jung-Hynes, T.L. Schmit, S.R. Reagan-Shaw, I.A. Siddiqui, H. Mukhtar, N. Ahmad, Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J. Pineal Res. 50, 140 (2011)
pubmed: 21062352
A. M. Sanchez-Sanchez, I. Antolin, N. Puente-Moncada, S. Suarez, M. Gomez-Lobo, C. Rodriguez, and V. Martin, Melatonin cytotoxicity is associated to Warburg effect inhibition in Ewing sarcoma cells. PLoS One 10, (2015).
N. Puente-Moncada, M. Turos-Cabal, A.M. Sánchez-Sánchez, I. Antolín, F. Herrera, J. Rodriguez-Blanco, C. Duarte-Olivenza, C. Rodriguez, V. Martín, Role of glucose metabolism in the differential antileukemic effect of melatonin on wild-type and FLT3-ITD mutant cells. Oncol. Rep. 44, 293 (2020)
pubmed: 32319665
A.M. Sánchez-Sánchez, V. Martín, G. García-Santos, J. Rodríguez-Blanco, S. Casado-Zapico, S. Suarez-Garnacho, I. Antolín, C. Rodriguez, Intracellular redox state as determinant for melatonin antiproliferative vs cytotoxic effects in cancer cells. Free Radic. Res. 45, 1333 (2011)
pubmed: 21923620 doi: 10.3109/10715762.2011.623700
L. Liu, Y. Xu, R.J. Reiter, Y. Pan, D. Chen, Y. Liu, X. Pu, L. Jiang, Z. Li, Inhibition of ERK1/2 signaling pathway is involved in melatonin’s antiproliferative effect on human MG-63 osteosarcoma cells. Cell. Physiol. Biochem. 39, 2297 (2016)
pubmed: 27832629 doi: 10.1159/000447922
N. Do Nascimento Gonçalves, J. Colombo, J. R. Lopes, G. B. Gelaleti, M. G. Moschetta, N. M. Sonehara, E. Hellmén, C. De Freitas Zanon, S. M. Oliani, and D. A. Pires De Campos Zuccari, Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PLoS One 11, (2016).
P. Santofimia-Castaño, D.C. Ruy, M. Fernandez-Bermejo, G.M. Salido, A. Gonzalez, Pharmacological dose of melatonin reduces cytosolic calcium load in response to cholecystokinin in mouse pancreatic acinar cells. Mol. Cell. Biochem. 397, 75 (2014)
pubmed: 25084987 doi: 10.1007/s11010-014-2174-4
Ö. Çelik, M. Naziroǧlu, Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol. Behav. 107, 458 (2012)
pubmed: 23041488 doi: 10.1016/j.physbeh.2012.09.013
B. Chovancova, S. Hudecova, L. Lencesova, P. Babula, I. Rezuchova, A. Penesova, M. Grman, R. Moravcik, M. Zeman, O. Krizanova, Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Cell. Physiol. Biochem. 44, 763 (2017)
pubmed: 29169174 doi: 10.1159/000485290
R. Squecco, A. Tani, S. Zecchi-Orlandini, L. Formigli, F. Francini, Melatonin affects voltage-dependent calcium and potassium currents in MCF-7 cell line cultured either in growth or differentiation medium. Eur. J. Pharmacol. 758, 40 (2015)
pubmed: 25843408 doi: 10.1016/j.ejphar.2015.03.068
I. Jardin, R. Diez-Bello, D. Falcon, S. Alvarado, S. Regodon, G. M. Salido, T. Smani, and J. A. Rosado, Melatonin downregulates TRPC6, impairing store-operated calcium entry in triple-negative breast cancer cells. J. Biol. Chem. 296, 100254 (2021).
A. M. Sterea and Y. El Hiani, The role of mitochondrial calcium signaling in the pathophysiology of cancer cells. in Adv. Exp. Med. Biol. (Springer New York LLC, 2020), pp. 747–770.
X. Zhou, J. Li, W. Yang, Calcium/calmodulin-dependent protein kinase II regulates cyclooxygenase-2 expression and prostaglandin E2 production by activating CAMP-response element-binding protein in rat peritoneal macrophages. Immunology 143, 287 (2014)
pubmed: 24773364 pmcid: 4172144 doi: 10.1111/imm.12309
H.S. Yang, J.I. Morris, Q. Wang, L.G. Korotchkina, M. Kwon, M.S. Patel, Human dihydrolipoamide dehydrogenase gene transcription is mediated by CAMP-response element-like site and TACGAC direct repeat. Int. J. Biochem. Cell Biol. 33, 902 (2001)
pubmed: 11461832 doi: 10.1016/S1357-2725(01)00061-9
C. Cárdenas, R.A. Miller, I. Smith, T. Bui, J. Molgó, M. Müller, H. Vais, K.H. Cheung, J. Yang, I. Parker, C.B. Thompson, M.J. Birnbaum, K.R. Hallows, J.K. Foskett, Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270 (2010)
pubmed: 20655468 pmcid: 2911450 doi: 10.1016/j.cell.2010.06.007
B. Van de Water, J. P. Zoeteweij, H. J. G. M. De Bont, G. J. Mulder, and J. F. Nagelkerke, Role of mitochondrial Ca2+ in the oxidative stress-induced dissipation of the mitochondrial membrane potential. Studies in isolated proximal tubular cells using the nephrotoxin 1,2-dichlorovinyl-L-cysteine. J. Biol. Chem. 269, 14546 (1994)
J.F. Buckman, I.J. Reynolds, Spontaneous changes in mitochondrial membrane potential in cultured neurons. J. Neurosci. 21, 5054 (2001)
pubmed: 11438581 pmcid: 6762873 doi: 10.1523/JNEUROSCI.21-14-05054.2001
E. Varghese, S. M. Samuel, Z. Sadiq, P. Kubatka, A. Liskova, J. Benacka, P. Pazinka, P. Kruzliak, and D. Büsselberg, Anti-cancer agents in proliferation and cell death: The calcium connection. Int. J. Mol. Sci. 20, (2019).
M. M. Xu, A. Seas, M. Kiyani, K. S. Y. Ji, and H. N. Bell, A temporal examination of calcium signaling in cancer- from tumorigenesis, to immune evasion, and metastasis. Cell Biosci. 8, (2018).
N. Prevarskaya, H. Ouadid-Ahidouch, R. Skryma, and Y. Shuba, Remodelling of Ca2+ transport in cancer: How it contributes to cancer hallmarks? Philos. Trans. R. Soc. B Biol. Sci. 369, (2014).
J. Wang, S. Toan, R. Li, and H. Zhou, Melatonin fine-tunes intracellular calcium signals and eliminates myocardial damage through the IP3R/MCU pathways in cardiorenal syndrome type 3. Biochem. Pharmacol. 174, (2020).
M. Argun, L. Tö, A.C. Uǧuz, C. Elik, Y. Tö, M. Naziroǧlu, Melatonin and amfenac modulate calcium entry, apoptosis, and oxidative stress in ARPE-19 cell culture exposed to blue light irradiation (405 Nm). Eye 28, 752 (2014)
pubmed: 24603419 pmcid: 4058615 doi: 10.1038/eye.2014.50
W. Suwanjang, A.Y. Abramov, K. Charngkaew, P. Govitrapong, B. Chetsawang, Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Neurochem. Int. 97, 34 (2016)
pubmed: 27155536 doi: 10.1016/j.neuint.2016.05.003
S. Patergnani, A. Danese, E. Bouhamida, G. Aguiari, M. Previati, P. Pinton, C. Giorgi, Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int. J. Mol. Sci. 21, 1 (2020)
doi: 10.3390/ijms21218323
H.L. Roderick, S.J. Cook, Ca2+ signalling checkpoints in cancer: Remodelling Ca 2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8, 361 (2008)
pubmed: 18432251 doi: 10.1038/nrc2374
R. Scrima, O. Cela, F. Agriesti, C. Piccoli, T. Tataranni, C. Pacelli, G. Mazzoccoli, and N. Capitanio, Mitochondrial calcium drives clock gene-dependent activation of pyruvate dehydrogenase and of oxidative phosphorylation. Biochim. Biophys. Acta - Mol. Cell Res. 1867, (2020).
N. Lander, M.A. Chiurillo, M.S. Bertolini, M. Storey, A.E. Vercesi, R. Docampo, Calcium-sensitive pyruvate dehydrogenase phosphatase is required for energy metabolism, growth, differentiation, and infectivity of Trypanosoma Cruzi. J. Biol. Chem. 293, 17402 (2018)
pubmed: 30232153 pmcid: 6231137 doi: 10.1074/jbc.RA118.004498
R.B. Hazan, G.R. Phillips, R. Fang Qiao, L. Norton, S.A. Aaronson, Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J. Cell Biol. 148, 779 (2000)
pubmed: 10684258 pmcid: 2169367 doi: 10.1083/jcb.148.4.779
M.J. Wheelock, Y. Shintani, M. Maeda, Y. Fukumoto, K.R. Johnson, Cadherin switching. J. Cell Sci. 121, 727 (2008)
pubmed: 18322269 doi: 10.1242/jcs.000455
O. De Wever, W. Westbroek, A. Verloes, N. Bloemen, M. Bracke, C. Gespach, E. Bruyneel, M. Mareel, Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-β or wounding. J. Cell Sci. 117, 4691 (2004)
pubmed: 15331629 doi: 10.1242/jcs.01322
M. Alaee, G. Danesh, and M. Pasdar, Plakoglobin reduces the in vitro growth, migration and invasion of ovarian cancer cells expressing N-cadherin and mutant P53. PLoS One 11, (2016).
X.F. Zhang, X.Q. Zhang, Z.X. Chang, C.C. Wu, H. Guo, MicroRNA-145 modulates migration and invasion of bladder cancer cells by targeting N-cadherin. Mol. Med. Rep. 17, 8450 (2018)
pubmed: 29693148
H. Chung, H. Jung, E. HoonJho, H.A.B. Multhaupt, J.R. Couchman, E.S. Oh, Keratinocytes negatively regulate the N-cadherin levels of melanoma cells via contact-mediated calcium regulation. Biochem. Biophys. Res. Commun. 503, 615 (2018)
pubmed: 29902459 doi: 10.1016/j.bbrc.2018.06.050
K. Kanemaru, J. Kubota, H. Sekiya, K. Hirose, Y. Okubo, M. Iino, Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury. Proc. Natl. Acad. Sci. U. S. A. 110, 11612 (2013)
pubmed: 23798419 pmcid: 3710861 doi: 10.1073/pnas.1300378110
S. Marchi, C. Giorgi, L. Galluzzi, P. Pinton, Ca2+ fluxes and cancer. Mol. Cell 78, 1055 (2020)
pubmed: 32559424 doi: 10.1016/j.molcel.2020.04.017
S. Casado-Zapico, J. Rodriguez-Blanco, G. García-Santos, V. Martín, A.M. Sánchez-Sánchez, I. Antolín, C. Rodriguez, Synergistic Antitumor effect of melatonin with several chemotherapeutic drugs on human Ewing sarcoma cancer cells: Potentiation of the extrinsic apoptotic pathway. J. Pineal Res. 48, 72 (2010)
pubmed: 20025643 doi: 10.1111/j.1600-079X.2009.00727.x

Auteurs

Ana M Sánchez-Sánchez (AM)

Departamento de Morfología Y Biología Celular, Universidad de Oviedo, Asturias, Spain.
Instituto Universitario de Oncología del Principado de Asturias (IUOPA), , Universidad de Oviedo, Asturias, Spain.
Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.

María Turos-Cabal (M)

Departamento de Morfología Y Biología Celular, Universidad de Oviedo, Asturias, Spain.
Instituto Universitario de Oncología del Principado de Asturias (IUOPA), , Universidad de Oviedo, Asturias, Spain.
Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.

Noelia Puente-Moncada (N)

Departamento de Morfología Y Biología Celular, Universidad de Oviedo, Asturias, Spain.
Instituto Universitario de Oncología del Principado de Asturias (IUOPA), , Universidad de Oviedo, Asturias, Spain.
Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.

Federico Herrera (F)

Department of Chemistry and Biochemistry (DQB), Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.

Carmen Rodríguez (C)

Departamento de Morfología Y Biología Celular, Universidad de Oviedo, Asturias, Spain.
Instituto Universitario de Oncología del Principado de Asturias (IUOPA), , Universidad de Oviedo, Asturias, Spain.
Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.

Vanesa Martín (V)

Departamento de Morfología Y Biología Celular, Universidad de Oviedo, Asturias, Spain. martinvanesa@uniovi.es.
Instituto Universitario de Oncología del Principado de Asturias (IUOPA), , Universidad de Oviedo, Asturias, Spain. martinvanesa@uniovi.es.
Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain. martinvanesa@uniovi.es.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH