Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics.


Journal

Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734

Informations de publication

Date de publication:
07 2022
Historique:
received: 05 03 2021
accepted: 24 03 2022
pubmed: 3 5 2022
medline: 8 7 2022
entrez: 2 5 2022
Statut: ppublish

Résumé

Although it is known that RNA undergoes liquid-liquid phase separation, the interplay between the molecular driving forces and the emergent features of the condensates, such as their morphologies and dynamic properties, is not well understood. We introduce a coarse-grained model to simulate phase separation of trinucleotide repeat RNAs, which are implicated in neurological disorders. After establishing that the simulations reproduce key experimental findings, we show that once recruited inside the liquid droplets, the monomers transition from hairpin-like structures to extended states. Interactions between the monomers in the condensates result in the formation of an intricate and dense intermolecular network, which severely restrains the fluctuations and mobilities of the RNAs inside large droplets. In the largest densely packed high-viscosity droplets, the mobility of RNA chains is best characterized by reptation, reminiscent of the dynamics in polymer melts. Our work provides a microscopic framework for understanding liquid-liquid phase separation in RNA, which is not easily discernible in current experiments.

Identifiants

pubmed: 35501484
doi: 10.1038/s41557-022-00934-z
pii: 10.1038/s41557-022-00934-z
doi:

Substances chimiques

RNA 63231-63-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

775-785

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
pubmed: 19460965 doi: 10.1126/science.1172046
Hyman, A. A., Weber, C. A. & Julicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).
pubmed: 25288112 doi: 10.1146/annurev-cellbio-100913-013325
Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).
doi: 10.1038/nphys3532
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
pubmed: 28935776 doi: 10.1126/science.aaf4382
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081 pmcid: 7434221 doi: 10.1038/nrm.2017.7
Langdon, E. M. & Gladfelter, A. S. A new lens for RNA localization: liquid–liquid phase separation. Annu. Rev. Microbiology 72, 255–271 (2018).
doi: 10.1146/annurev-micro-090817-062814
Berry, J., Brangwynne, C. P. & Haataja, M. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 81, 046601 (2018).
pubmed: 29313527 doi: 10.1088/1361-6633/aaa61e
Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).
pubmed: 29602697 pmcid: 6034118 doi: 10.1016/j.tcb.2018.02.004
Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).
pubmed: 30682370 pmcid: 6445271 doi: 10.1016/j.cell.2018.12.035
Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).
pubmed: 32004090 doi: 10.1146/annurev-biophys-121219-081629
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).
pubmed: 32312191 pmcid: 7469089 doi: 10.1146/annurev-physchem-071819-113553
Rhine, K., Vidaurre, V. & Myong, S. RNA droplets. Annu. Rev. Biophys. 49, 247–265 (2020).
pubmed: 32040349 pmcid: 7695521 doi: 10.1146/annurev-biophys-052118-115508
Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).
pubmed: 32632317 doi: 10.1038/s41580-020-0264-6
Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).
pubmed: 32684431 pmcid: 7572565 doi: 10.1016/j.tibs.2020.06.007
Stockmayer, W. H. Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11, 45–55 (1943).
doi: 10.1063/1.1723803
Flory, P. J. Statistical Mechanics of Chain Molecules (Interscience, 1969).
doi: 10.1002/bip.1969.360080514
Semenov, A. N. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31, 1373–1385 (1998).
doi: 10.1021/ma970616h
Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).
pubmed: 22398450 pmcid: 3343696 doi: 10.1038/nature10879
Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).
pubmed: 22579282 doi: 10.1016/j.cell.2012.04.016
Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).
pubmed: 26317470 doi: 10.1016/j.cell.2015.07.047
Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).
pubmed: 29650702 pmcid: 6091854 doi: 10.1126/science.aar7366
Schwartz, J. C., Wang, X., Podell, E. R. & Cech, T. R. RNA seeds higher-order assembly of FUS protein. Cell Rep. 5, 918–925 (2013).
pubmed: 24268778 pmcid: 3925748 doi: 10.1016/j.celrep.2013.11.017
Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int Ed. 129, 11512–11517 (2017).
doi: 10.1002/ange.201703191
van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).
pubmed: 29483269 pmcid: 5856561 doi: 10.1073/pnas.1800038115
van Treeck, B. & Parker, R. Emerging roles for intermolecular RNA–RNA interactions in RNP assemblies. Cell 174, 791–802 (2018).
pubmed: 30096311 pmcid: 6200146 doi: 10.1016/j.cell.2018.07.023
Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927 (2018).
pubmed: 29650703 pmcid: 6192030 doi: 10.1126/science.aar7432
Boeynaems, S. et al. Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).
pubmed: 30926670 pmcid: 6475405 doi: 10.1073/pnas.1821038116
Tauber, D., Tauber, G. & Parker, R. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 45, 764–778 (2020).
pubmed: 32475683 pmcid: 7211619 doi: 10.1016/j.tibs.2020.05.002
Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361.e17 (2020).
pubmed: 32302572 pmcid: 7181197 doi: 10.1016/j.cell.2020.03.049
Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e28 (2020).
pubmed: 32302570 pmcid: 7816278 doi: 10.1016/j.cell.2020.03.050
Kaur, T. et al. Sequence-encoded and composition-dependent protein–RNA interactions control multiphasic condensate morphologies. Nat. Commun. 12, 872 (2021).
pubmed: 33558506 pmcid: 7870978 doi: 10.1038/s41467-021-21089-4
Aumiller, W. M., Pir Cakmak, F., Davis, B. W. & Keating, C. D. RNA-based coacervates as a model for membraneless organelles: formation, properties, and interfacial liposome assembly. Langmuir 32, 10042–10053 (2016).
pubmed: 27599198 doi: 10.1021/acs.langmuir.6b02499
Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).
pubmed: 28562589 pmcid: 5555642 doi: 10.1038/nature22386
Aumiller, W. M. & Keating, C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).
pubmed: 26791895 doi: 10.1038/nchem.2414
Trcek, T. et al. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat. Comm. 6, 7962 (2015).
doi: 10.1038/ncomms8962
Trcek, T. et al. Sequence-independent self-assembly of germ granule mRNAs into homotypic clusters. Mol. Cell 78, 941–950.e12 (2020).
pubmed: 32464092 pmcid: 7325742 doi: 10.1016/j.molcel.2020.05.008
Gatchel, J. R. & Zoghbi, H. Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755 (2005).
pubmed: 16205714 doi: 10.1038/nrg1691
La Spada, A. R. & Taylor, J. P. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11, 247–258 (2010).
pubmed: 20177426 pmcid: 4704680 doi: 10.1038/nrg2748
McMurray, C. T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 11, 786–799 (2010).
pubmed: 20953213 pmcid: 3175376 doi: 10.1038/nrg2828
Krzyzosiak, W. J. et al. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucl. Acids Res. 40, 11–26 (2012).
pubmed: 21908410 doi: 10.1093/nar/gkr729
Lee, D.-Y. & McMurray, C. T. Trinucleotide expansion in disease: why is there a length threshold? Curr. Opin. Genet. Dev. 26, 131–140 (2014).
pubmed: 25282113 doi: 10.1016/j.gde.2014.07.003
Kiliszek, A., Kierzek, R., Krzyzosiak, W. J. & Rypniewski, W. Atomic resolution structure of CAG RNA repeats: structural insights and implications for the trinucleotide repeat expansion diseases. Nucl. Acids Res. 38, 8370–8376 (2010).
pubmed: 20702420 pmcid: 3001072 doi: 10.1093/nar/gkq700
de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).
doi: 10.1063/1.1675789
de Mezer, M., Wojciechowska, M., Napierala, M., Sobczak, K. & Krzyzosiak, W. J. Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucl. Acids Res. 39, 3852–3863 (2011).
pubmed: 21247881 pmcid: 3089464 doi: 10.1093/nar/gkq1323
Ciesiolka, A., Jazurek, M., Drazkowska, K. & Krzyzosiak, W. J. Structural characteristics of simple RNA repeats associated with disease and their deleterious protein interactions. Front. Cell. Neurosci. 11, 97 (2017).
pubmed: 28442996 pmcid: 5387085 doi: 10.3389/fncel.2017.00097
Jawerth, L. et al. Protein condensates as aging Maxwell fluids. Science 370, 1317–1323 (2020).
pubmed: 33303613 doi: 10.1126/science.aaw4951
Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).
pubmed: 22579281 pmcid: 6347373 doi: 10.1016/j.cell.2012.04.017
Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).
pubmed: 26406374 pmcid: 5149108 doi: 10.1016/j.cell.2015.09.015
Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).
pubmed: 26412307 pmcid: 4609299 doi: 10.1016/j.molcel.2015.08.018
Murray, D. T. et al. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615–627.e16 (2017).
pubmed: 28942918 doi: 10.1016/j.cell.2017.08.048
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).
pubmed: 29961577 pmcid: 6063760
Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).
pubmed: 29301985 doi: 10.1126/science.aao5654
Wegmann, S. et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018).
pubmed: 29472250 pmcid: 5881631 doi: 10.15252/embj.201798049
Ray, S. et al. α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 12, 705–716 (2020).
pubmed: 32514159 doi: 10.1038/s41557-020-0465-9
Pytowski, L., Lee, C. F., Foley, A. C., Vaux, D. J. & Jean, L. Liquid–liquid phase separation of type II diabetes-associated IAPP initiates hydrogelation and aggregation. Proc. Natl Acad. Sci. USA 117, 12050–12061 (2020).
pubmed: 32414928 pmcid: 7275713 doi: 10.1073/pnas.1916716117
Kremer, K. & Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990).
doi: 10.1063/1.458541
Hsu, H.-P. & Kremer, K. Static and dynamic properties of large polymer melts in equilibrium. J. Chem. Phys. 144, 154907 (2016).
pubmed: 27389240 doi: 10.1063/1.4946033
Ma, W., Zheng, G., Xie, W. & Mayr, C. In vivo reconstitution finds multivalent RNA–RNA interactions as drivers of mesh-like condensates. eLife 10, e64252 (2021).
pubmed: 33650968 pmcid: 7968931 doi: 10.7554/eLife.64252
Marquis Gacy, A., Goellner, G., Juranić, N., Macura, S. & McMurray, C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).
doi: 10.1016/0092-8674(95)90074-8
Lai, W.-J. C. et al. mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances. Nat. Commun. 9, 4328 (2018).
pubmed: 30337527 pmcid: 6193969 doi: 10.1038/s41467-018-06792-z
Nguyen, P. H., Li, M. S., Stock, G., Straub, J. E. & Thirumalai, D. Monomer adds to preformed structured oligomers of Aβ-peptides by a two-stage dock–lock mechanism. Proc. Natl Acad. Sci. USA 104, 111–116 (2007).
pubmed: 17190811 doi: 10.1073/pnas.0607440104
Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).
pubmed: 26015579 pmcid: 4466716 doi: 10.1073/pnas.1504822112
Moon, S. L. et al. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat. Cell Biol. 21, 162–168 (2019).
pubmed: 30664789 pmcid: 6375083 doi: 10.1038/s41556-018-0263-4
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).
pubmed: 24336214 doi: 10.1038/nature12894
Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).
pubmed: 24821474 doi: 10.1038/nrg3681
Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf5371 (2016).
pubmed: 27708011 pmcid: 5367264 doi: 10.1126/science.aaf5371
Tauber, D. et al. Modulation of RNA condensation by the DEAD-Box protein eIF4A. Cell 180, 411–426.e16 (2020).
pubmed: 31928844 pmcid: 7194247 doi: 10.1016/j.cell.2019.12.031
Onuchic, P. L., Milin, A. N., Alshareedah, I., Deniz, A. A. & Banerjee, P. R. Divalent cations can control a switch-like behavior in heterotypic and homotypic RNA coacervates. Sci. Rep. 9, 12161 (2019).
pubmed: 31434954 pmcid: 6704260 doi: 10.1038/s41598-019-48457-x
Manning, G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Quart. Rev. Biophys. 11, 179–246 (1978).
doi: 10.1017/S0033583500002031
Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 44, 269–282 (1997).
pubmed: 9591479 doi: 10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T
Bai, Y. et al. Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. J. Am. Chem. Soc. 129, 14981–14988 (2007).
pubmed: 17990882 pmcid: 3167487 doi: 10.1021/ja075020g
Nguyen, H. T., Hori, N. & Thirumalai, D. Theory and simulations for RNA folding in mixtures of monovalent and divalent cations. Proc. Natl Acad. Sci. USA 116, 21022–21030 (2019).
pubmed: 31570624 pmcid: 6800359 doi: 10.1073/pnas.1911632116
Lemieux, S. & Major, F. RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire. Nucl. Acid Res. 30, 4250–4263 (2002).
doi: 10.1093/nar/gkf540
Yang, H. et al. Tools for the automatic identification and classification of RNA base pairs. Nucl. Acid Res. 31, 3450–3460 (2003).
doi: 10.1093/nar/gkg529
Denesyuk, N. A. & Thirumalai, D. Coarse-grained model for predicting RNA folding thermodynamics. J. Phys. Chem. B 117, 4901–4911 (2013).
pubmed: 23527587 doi: 10.1021/jp401087x
Denesyuk, N. A. & Thirumalai, D. How do metal ions direct ribozyme folding? Nat. Chem. 7, 793–801 (2015).
pubmed: 26391078 doi: 10.1038/nchem.2330
Best, R. B., Hummer, G. & Eaton, W. A. Native contacts determine protein folding mechanisms in atomistic simulations. Proc. Natl Acad. Sci. USA 110, 17874–17879 (2013).
pubmed: 24128758 pmcid: 3816414 doi: 10.1073/pnas.1311599110
Chen, H. et al. Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc. Natl Acad. Sci. USA 109, 799–804 (2012).
pubmed: 22203973 doi: 10.1073/pnas.1119057109
Kerpedjiev, P., Hammer, S. & Hofacker, I. L. Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams. Bioinformatics 31, 3377–3379 (2015).
pubmed: 26099263 pmcid: 4595900 doi: 10.1093/bioinformatics/btv372
Hyeon, C. & Thirumalai, D. Mechanical unfolding of RNA: from hairpins to structures with internal multiloops. Biophys. J. 92, 731–743 (2007).
pubmed: 17028142 doi: 10.1529/biophysj.106.093062
Lin, J.-C. & Thirumalai, D. Relative stability of helices determines the folding landscape of adenine riboswitch aptamers. J. Am. Chem. Soc. 130, 14080–14081 (2008).
pubmed: 18828635 doi: 10.1021/ja8063638
Weeks, J. D., Chandler, D. & Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247 (1971).
doi: 10.1063/1.1674820
Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol. 13, e1005659 (2017).
pubmed: 28746339 pmcid: 5549999 doi: 10.1371/journal.pcbi.1005659
Honeycutt, J. D. & Thirumalai, D. The nature of folded states of globular proteins. Biopolymers 32, 695–709 (1992).
pubmed: 1643270 doi: 10.1002/bip.360320610
de Gennes, P. G. Statistics of branching and hairpin helices for the dAT copolymer. Biopolymers 6, 715–729 (1968).
pubmed: 5648278 doi: 10.1002/bip.1968.360060508
Yoffe, A. M., Prinsen, P., Gelbart, W. M. & Ben-Shaul, A. The ends of a large RNA molecule are necessarily close. Nucl. Acids Res. 39, 292–299 (2011).
pubmed: 20810537 doi: 10.1093/nar/gkq642
Clote, P., Ponty, Y. & Steyaert, J.-M. Expected distance between terminal nucleotides of RNA secondary structures. J. Math. Biol. 65, 581–599 (2012).
pubmed: 21984358 doi: 10.1007/s00285-011-0467-8
Leontis, N. B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).
pubmed: 11345429 pmcid: 1370104 doi: 10.1017/S1355838201002515
Hori, N., Denesyuk, N. A. & Thirumalai, D. Shape changes and cooperativity in the folding of the central domain of the 16S ribosomal RNA. Proc. Natl Acad. Sci. USA 118, e2020837118 (2021).
pubmed: 33658370 pmcid: 7958424 doi: 10.1073/pnas.2020837118
Nguyen, H., Hori, N. & Thirumalai, D. Raw data for ‘Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics’ (2021); https://doi.org/10.5281/zenodo.5794441

Auteurs

Hung T Nguyen (HT)

Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.

Naoto Hori (N)

School of Pharmacy, University of Nottingham, Nottingham, UK.

D Thirumalai (D)

Department of Chemistry, The University of Texas at Austin, Austin, TX, USA. dave.thirumalai@gmail.com.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Classifications MeSH