Overexpression of Adenovirus E1A Reverses Transforming Growth Factor-β-induced Epithelial-mesenchymal Transition in Human Esophageal Cancer Cells.
E1A
EMT
TGF-β
esophageal cancer
oncolytic adenovirus
Journal
Acta medica Okayama
ISSN: 0386-300X
Titre abrégé: Acta Med Okayama
Pays: Japan
ID NLM: 0417611
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
entrez:
3
5
2022
pubmed:
4
5
2022
medline:
6
5
2022
Statut:
ppublish
Résumé
The epithelial-mesenchymal transition (EMT), a normal biological process by which epithelial cells acquire a mesenchymal phenotype, is associated with migration, metastasis, and chemoresistance in cancer cells, and with poor prognosis in patients with esophageal cancer. However, therapeutic strategies to inhibit EMT in tumor environments remain elusive. Here, we show the therapeutic potential of telomerase-specific replication- competent oncolytic adenovirus OBP-301 in human esophageal cancer TE4 and TE6 cells with an EMT phenotype. Transforming growth factor-β (TGF-β) administration induced the EMT phenotype with spindleshaped morphology, upregulation of mesenchymal markers and EMT transcription factors, migration, and chemoresistance in TE4 and TE6 cells. OBP-301 significantly inhibited the EMT phenotype via E1 accumulation. EMT cancer cells were susceptible to OBP-301 via massive autophagy induction. OBP-301 suppressed tumor growth and lymph node metastasis of TE4 cells co-inoculated with TGF-β-secreting fibroblasts. Our results suggest that OBP-301 inhibits the TGF-β-induced EMT phenotype in human esophageal cancer cells. OBP-301-mediated E1A overexpression is a promising antitumor strategy to inhibit EMT-mediated esophageal cancer progression.
Substances chimiques
Transforming Growth Factor beta
0
Transforming Growth Factors
76057-06-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
203-215Déclaration de conflit d'intérêts
No potential conflict of interest relevant to this article was reported.
Références
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest (2009) 119: 1420-1428.
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelialmesenchymal transitions in development and disease. Cell (2009) 139: 871-890.
De Craene B and Berx G: Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer (2013) 13: 97- 110.
Uchikado Y, Natsugoe S, Okumura H, Setoyama T, Matsumoto M, Ishigami S and Aikou T: Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res (2005) 11: 1174-1180.
Kim MA, Lee HS, Lee HE, Kim JH, Yang HK and Kim WH: Prognostic importance of epithelial-mesenchymal transition-related protein expression in gastric carcinoma. Histopathology (2009) 54: 442-451.
Shioiri M, Shida T, Koda K, Oda K, Seike K, Nishimura M, Takano S and Miyazaki M: Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer (2006) 94: 1816-1822.
Javle MM, Gibbs JF, Iwata KK, Pak Y, Rutledge P, Yu J, Black JD, Tan D and Khoury T: Epithelial-mesenchymal transition (EMT) and activated extracellular signal-regulated kinase (p-Erk) in surgically resected pancreatic cancer. Ann Surg Oncol (2007) 14: 3527-3533.
Rees JR, Onwuegbusi BA, Save VE, Alderson D and Fitzgerald RC: In vivo and in vitro evidence for transforming growth factorbeta1- mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res (2006) 66: 9583-9590.
Noma K, Smalley KS, Lioni M, Naomoto Y, Tanaka N, El-Deiry W, King AJ, Nakagawa H and Herlyn M: The essential role of fibroblasts in esophageal squamous cell carcinoma-induced angiogenesis. Gastroenterology (2008) 134: 1981-1993.
Ebbing EA, van der Zalm AP, Steins A, Creemers A, Hermsen S, Rentenaar R, Klein M, Waasdorp C, Hooijer GKJ, Meijer SL, Krishnadath KK, Punt CJA, van Berge Henegouwen MI, Gisbertz SS, van Delden OM, Hulshof MCCM, Medema JP, van Laarhoven HWM and Bijlsma MF: Stromal-derived interleukin 6 drives epithelial- to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc Natl Acad Sci U S A (2019) 116: 2237-2242.
Puisieux A, Brabletz T and Caramel J: Oncogenic roles of EMTinducing transcription factors. Nat Cell Biol (2014) 16: 488-494.
Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med (2013) 19: 1423-1437.
Pickup M, Novitskiy S and Moses HL: The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer (2013) 13: 788- 799.
Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res (2009) 19: 156-172.
Russell SJ, Peng KW and Bell JC: Oncolytic virotherapy. Nat Biotechnol (2012) 30: 658-670.
Kawashima T, Kagawa S, Kobayashi N, Shirakiya Y, Umeoka T, Teraishi F, Taki M, Kyo S, Tanaka N and Fujiwara T: Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res (2004) 10: 285-292.
Hashimoto Y, Watanabe Y, Shirakiya Y, Uno F, Kagawa S, Kawamura H, Nagai K, Tanaka N, Kumon H, Urata Y and Fujiwara T: Establishment of biological and pharmacokinetic assays of telomerase-specific replication-selective adenovirus. Cancer Sci (2008) 99: 385-390.
Yano S, Tazawa H, Hashimoto Y, Shirakawa Y, Kuroda S, Nishizaki M, Kishimoto H, Uno F, Nagasaka T, Urata Y, Kagawa S, Hoffman RM and Fujiwara T: A genetically engineered oncolytic adenovirus decoys and lethally traps quiescent cancer stemlike cells in S/G2/M phases. Clin Cancer Res (2013) 19: 6495- 6505.
Kojima T, Watanabe Y, Hashimoto Y, Kuroda S, Yamasaki Y, Yano S, Ouchi M, Tazawa H, Uno F, Kagawa S, Kyo S, Mizuguchi H, Urata Y, Tanaka N and Fujiwara T: In vivo biological purging for lymph node metastasis of human colorectal cancer by telomerase-specific oncolytic virotherapy. Ann Surg (2010) 251: 1079-1086.
Kikuchi S, Kishimoto H, Tazawa H, Hashimoto Y, Kuroda S, Nishizaki M, Nagasaka T, Shirakawa Y, Kagawa S, Urata Y, Hoffman RM and Fujiwara T: Biological ablation of sentinel lymph node metastasis in submucosally invaded early gastrointestinal cancer. Mol Ther (2015) 23: 501-509.
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J and Weinberg RA: The epithelialmesenchymal transition generates cells with properties of stem cells. Cell (2008) 133: 704-715.
Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S and Puisieux A: Generation of breast cancer stem cells through epithelial- mesenchymal transition. PLoS One (2008) 3: e2888.
Tse JC and Kalluri R: Mechanisms of metastasis: epithelial-tomesenchymal transition and contribution of tumor microenvironment. Journal of cellular biochemistry (2007) 101: 816-829.
Frisch SM: Antioncogenic Effect of Adenovirus-E1a in Human Tumor-Cells. P Natl Acad Sci USA (1991) 88: 9077-9081.
Chang YW, Hung MC and Su JL: The anti-tumor activity of E1A and its implications in cancer therapy. Arch Immunol Ther Exp (Warsz) (2014) 62: 195-204.
Frisch SM: E1a induces the expression of epithelial characteristics. J Cell Biol (1994) 127: 1085-1096.
Kashima H, Noma K, Ohara T, Kato T, Katsura Y, Komoto S, Sato H, Katsube R, Ninomiya T, Tazawa H, Shirakawa Y and Fujiwara T: Cancer-associated fibroblasts (CAFs) promote the lymph node metastasis of esophageal squamous cell carcinoma. Int J Cancer (2019) 144: 828-840.
Ao M, Williams K, Bhowmick NA and Hayward SW: Transforming growth factor-beta promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res (2006) 66: 8007-8016.
Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H and Mori M: Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci (2010) 101: 293-299.
Tazawa H, Yano S, Yoshida R, Yamasaki Y, Sasaki T, Hashimoto Y, Kuroda S, Ouchi M, Onishi T, Uno F, Kagawa S, Urata Y and Fujiwara T: Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-microRNA-7- epidermal growth factor receptor axis. Int J Cancer (2012) 131: 2939-2950.
Sasaki T, Tazawa H, Hasei J, Kunisada T, Yoshida A, Hashimoto Y, Yano S, Yoshida R, Uno F, Kagawa S, Morimoto Y, Urata Y, Ozaki T and Fujiwara T: Preclinical evaluation of telomerase- specific oncolytic virotherapy for human bone and soft tissue sarcomas. Clin Cancer Res (2011) 17: 1828-1838.
Hasei J, Sasaki T, Tazawa H, Osaki S, Yamakawa Y, Kunisada T, Yoshida A, Hashimoto Y, Onishi T, Uno F, Kagawa S, Urata Y, Ozaki T and Fujiwara T: Dual programmed cell death pathways induced by p53 transactivation overcome resistance to oncolytic adenovirus in human osteosarcoma cells. Mol Cancer Ther (2013) 12: 314-325.
Osaki S, Tazawa H, Hasei J, Yamakawa Y, Omori T, Sugiu K, Komatsubara T, Fujiwara T, Sasaki T, Kunisada T, Yoshida A, Urata Y, Kagawa S, Ozaki T and Fujiwara T: Ablation of MCL1 expression by virally induced microRNA-29 reverses chemoresistance in human osteosarcomas. Sci Rep (2016) 6: 28953.
de Groot RP, Kranenburg O, de Wit L, van den Eijnden-van Raaij J, Mummery C, van der Eb AJ and Zantema A: Adenovirus E1A antagonizes both negative and positive growth signals elicited by transforming growth factor beta 1. Cell Growth Differ (1995) 6: 531-540.
Gervasi M, Bianchi-Smiraglia A, Cummings M, Zheng Q, Wang D, Liu S and Bakin AV: JunB contributes to Id2 repression and the epithelial-mesenchymal transition in response to transforming growth factor-beta. J Cell Biol (2012) 196: 589-603.
Ferrari R, Gou D, Jawdekar G, Johnson SA, Nava M, Su T, Yousef AF, Zemke NR, Pellegrini M, Kurdistani SK and Berk AJ: Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection. Cell Host Microbe (2014) 16: 663-676.
Chang H, Liu Y, Xue M, Liu H, Du S, Zhang L and Wang P: Synergistic action of master transcription factors controls epithelial- to-mesenchymal transition. Nucleic Acids Res (2016) 44: 2514- 2527.
Mizushima N and Komatsu M: Autophagy: renovation of cells and tissues. Cell (2011) 147: 728-741.
Jiang Y, Woosley AN, Sivalingam N, Natarajan S and Howe PH: Cathepsin-B-mediated cleavage of Disabled-2 regulates TGF-betainduced autophagy. Nat Cell Biol (2016) 18: 851-863.
Tazawa H, Kagawa S and Fujiwara T: Oncolytic adenovirusinduced autophagy: tumor-suppressive effect and molecular basis. Acta Med Okayama (2013) 67: 333-342.
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Pure E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT and Werb Z: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer (2020) 20: 174-186.