Enabling Medicago truncatula forward genetics: identification of genetic crossing partner for R108 and development of mapping resources for Tnt1 mutants.
Medicago truncatula
Tnt1
Indel markers
genetic cross
map-based cloning
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
revised:
19
04
2022
received:
11
02
2022
accepted:
01
05
2022
pubmed:
6
5
2022
medline:
23
7
2022
entrez:
5
5
2022
Statut:
ppublish
Résumé
Though Medicago truncatula Tnt1 mutants are widely used by researchers in the legume community, they are mainly used for reverse genetics because of the availability of the BLAST-searchable large-scale flanking sequence tags database. However, these mutants should have also been used extensively for forward genetic screens, an effort that has been hindered due to the lack of a compatible genetic crossing partner for the M. truncatula genotype R108, from which Tnt1 mutants were generated. In this study, we selected three Medicago HapMap lines (HM017, HM018 and HM022) and performed reciprocal genetic crosses with R108. After phenotypic analyses in F1 and F2 progenies, HM017 was identified as a compatible crossing partner with R108. By comparing the assembled genomic sequences of HM017 and R108, we developed and confirmed 318 Indel markers evenly distributed across the eight chromosomes of the M. truncatula genome. To validate the effectiveness of these markers, by employing the map-based cloning approach, we cloned the causative gene in the dwarf mutant crs isolated from the Tnt1 mutant population, identifying it as gibberellin 3-β-dioxygenase 1, using some of the confirmed Indel markers. The primer sequences and the size difference of each marker were made available for users in the web-based database. The identification of the crossing partner for R108 and the generation of Indel markers will enhance the forward genetics and the overall usage of the Tnt1 mutants.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
608-616Informations de copyright
© 2022 Society for Experimental Biology and John Wiley & Sons Ltd.
Références
Ané, J.M., Zhu, H. & Frugoli, J. (2008) Recent advances in Medicago truncatula genomics. International Journal of Plant Genomics, 2008, 1, 256597-11.
Araújo, S.S., Duque, A.S.R.L.A., Santos, D.M.M.F. & Fevereiro, M.P.S. (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell, Tissue and Organ Culture, 78, 123-131.
Barker, D.G., Bianchi, S., Blondon, F., Dattée, Y., Duc, G., Essad, S. et al. (1990) Medicago truncatula, a model plant for studying the molecular genetics of the rhizobium-legume symbiosis. Plant Molecular Biology Reporter, 8, 40-49.
Barnett, M.J., Toman, C.J., Fisher, R.F. & Long, S.R. (2004) A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proceedings of the National Academy of Science USA, 101, 16636-16641.
Bell, C.J., Dixon, R.A., Farmer, A.D., Flores, R., Inman, J., Gonzales, R.A. et al. (2001) The Medicago Genome Initiative: a model legume database. Nucleic Acids Research, 29, 114-117.
Benedito, V.A., Torres-Jerez, I., Murray, J.D., Andriankaja, A., Allen, S., Kakar, K. et al. (2008) A gene expression atlas of the model legume Medicago truncatula. Plant Journal, 55, 504-513.
Broeckling, C.D., Huhman, D.V., Farag, M.A., Smith, J.T., May, G.D., Mendes, P. et al. (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany, 56, 323-336.
Chabaud, M., Boisson-Dernier, A., Journet, E.-P., de Carvalho-Niebel, F. & Barker, D.G. (2008) Agrobacterium-mediated transformation of Medicago truncatula. In: Kirti, P. (Ed.) Handbook of new technologies for genetic improvement of legumes. Boca Raton, New York: CRC press, pp. 45-67.
Chabaud, M., Carvalho-Niebel, F. & Barker, D.G. (2003) Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Reports, 22, 46-51.
Chabaud, M., Lichtenzveig, J., Ellwood, S., Pfaff, T. & Journet, E.P. (2006) Vernalization, crossings and testing for pollen viability. In: Mathesius, U., Journet, E.-P. & Sumner, L. (Eds.) The Medicago truncatula handbook. Ardmore, OK: Samuel Roberts Noble Foundation. http://www.noble.org/MedicagoHandbook/
Cheng, X., Wang, M., Lee, H.K., Tadege, M., Ratet, P., Udvardi, M. et al. (2014) An efficient reverse genetics platform in the model legume Medicago truncatula. New Phytologist, 201, 1065-1076.
Cheng, X., Wen, J., Tadege, M., Ratet, P. & Mysore, K.S. (2011) Reverse genetics in Medicago truncatula using Tnt1 insertion mutants. In: Pereira, A. (Ed.) Plant reverse genetics: methods and protocols. Totowa, NJ: Humana Press, pp. 179-190.
Choi, H.K., Kim, D.J., Uhm, T.S., Limpens, E., Lim, H.J., Mun, J.H. et al. (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics, 166, 1463-1502.
Choi, H.K., Mun, J.H., Kim, D.J., Zhu, H., Baek, J.M., Mudge, J. et al. (2004) Estimating genome conservation between crop and model legume species. Proceedings of the National Academy of Science USA, 101, 15289-15294.
Crane, C., Dixon, R.A. & Wang, Z.Y. (2006) Medicago truncatula transformation using root explants. Methods in Molecular Biology, 343, 137-142.
Gepts, P., Beavis, W.D., Brummer, E.C., Shoemaker, R.C., Stalker, H.T., Weeden, N.F. et al. (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiology, 137, 1228-1235.
Graham, P.H. & Vance, C.P. (2003) Legumes: importance and constraints to greater use. Plant Physiology, 131, 872-877.
Guo, S., Zhang, X., Bai, Q., Zhao, W., Fang, Y., Zhou, S. et al. (2020) Cloning and functional analysis of dwarf gene mini plant 1 (MNP1) in Medicago truncatula. International Journal of Molecular Sciences, 21, 4968.
Han, Y., Kang, Y., Torres-Jerez, I., Cheung, F., Town, C.D., Zhao, P.X. et al. (2011) Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genomics, 12, 1-11.
Handberg, K. & Stougaard, J. (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular-genetics. Plant Journal, 2, 487-496.
Li, W., Ma, Q., Yin, P., Wen, J., Pei, Y., Niu, L. et al. (2021) The GA 20-oxidase encoding gene MSD1 controls the main stem elongation in Medicago truncatula. Frontiers in Plant Science, 12, 709625.
Liu, Y.G., Mitsukawa, N., Oosumi, T. & Whittier, R.F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant Journal, 8, 457-463.
Lukowitz, W., Gillmor, C.S. & Scheible, W.R. (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiology, 123, 795-805.
Martin, D.N., Proebsting, W.M. & Hedden, P. (1997) Mendel's dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proceedings of the National Academy of Sciences USA, 94, 8907-8911.
Pecrix, Y., Staton, S.E., Sallet, E., Lelandais-Brière, C., Moreau, S., Carrère, S. et al. (2018) Whole-genome landscape of Medicago truncatula symbiotic genes. Nature Plants, 4, 1017-1025.
Smil, V. (1999) Nitrogen in crop production: an account of global flows. Global Biogeochemical Cycles, 13, 647-662.
Sun, L., Gill, U.S., Nandety, R.S., Kwon, S., Mehta, P., Dickstein, R. et al. (2019) Genome-wide analysis of flanking sequences reveals that Tnt1 insertion is positively correlated with gene methylation in Medicago truncatula. The Plant Journal, 98, 1106-1119.
Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A. et al. (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant Journal, 54, 335-347.
Tang, H., Krishnakumar, V., Bidwell, S., Rosen, B., Chan, A., Zhou, S. et al. (2014) An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics, 15, 312.
Thoquet, P., Ghérardi, M., Journet, E.P., Kereszt, A., Ané, J.M., Prosperi, J.M. et al. (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biology, 2, 1.
Veerappan, V., Kadel, K., Alexis, N., Scott, A., Kryvoruchko, I., Sinharoy, S. et al. (2014) Keel petal incision: a simple and efficient method for genetic crossing in Medicago truncatula. Plant Methods, 10, 11.
Wang, T.L., Domoney, C., Hedley, C.L., Casey, R. & Grusak, M.A. (2003) Can we improve the nutritional quality of legume seeds? Plant Physiology, 131, 886-891.
Watson, B.S., Asirvatham, V.S., Wang, L.J. & Sumner, L.W. (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiology, 131, 1104-1123.
Yeoh, C.C., Balcerowicz, M., Zhang, L., Jaudal, M., Brocard, L., Ratet, P. et al. (2013) Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago. PLoS One, 8, e53467.
Yoo, C.M., Wen, J., Motes, C.M., Sparks, J.A. & Blancaflor, E.B. (2008) A class one ADP-ribosylation factor GTPase-activating protein is critical for maintaining directional root hair growth in Arabidopsis thaliana. Plant Physiology, 147, 1659-1674.
Young, N.D., Cannon, S.B., Sato, S., Kim, D.J., Cook, D.R., Town, C.D. et al. (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiology, 137, 1174-1181.
Young, N.D., Debellé, F., Oldroyd, G.E., Geurts, R., Cannon, S.B., Udvardi, M.K. et al. (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 480, 520-524.
Zhang, X., He, L., Zhao, B., Zhou, S., Li, Y., He, H. et al. (2020) Dwarf and increased branching 1 controls plant height and axillary bud outgrowth in Medicago truncatula. Journal of Experimental Botany, 71, 6355-6365.