Helix Induction and Inversion of Polymeric Foldamer Regulated by the Single Enantiomers.


Journal

Macromolecular rapid communications
ISSN: 1521-3927
Titre abrégé: Macromol Rapid Commun
Pays: Germany
ID NLM: 9888239

Informations de publication

Date de publication:
Sep 2022
Historique:
revised: 28 04 2022
received: 12 03 2022
pubmed: 6 5 2022
medline: 9 9 2022
entrez: 5 5 2022
Statut: ppublish

Résumé

Generally, a single enantiomer can induce a foldamer into a preferred-handed helix, while another condition is required for the helical inversion. Herein, it is found that the helix induction and subsequent inversion of poly(m-phenylene diethynylene)-based foldamer bearing aza-18-crown-6 pendants (Poly-1) can be realized by increasing the concentration of sterically hindered l-amino acid perchlorate salts. When the amount of chiral enantiomers is small, one enantiomer tends to complex with two non-adjacent aza-18-crown-6 rings via three N

Identifiants

pubmed: 35510985
doi: 10.1002/marc.202200238
doi:

Substances chimiques

Amino Acids 0
Polymers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2200238

Subventions

Organisme : National Natural Science Foundation of China
ID : 51973072
Organisme : National Natural Science Foundation of China
ID : 52103258
Organisme : The Innovation and Talent Recruitment Base of New Energy Chemistry and Device
ID : B21003

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

M. Toya, H. Ito, K. Itami, Tetrahedron Lett. 2018, 59, 1531.
T. Ikai, S. Awata, T. Kudo, R. Ishidate, K. Maeda, S. Kanoh, Polym. Chem. 2017, 8, 4190.
N. Ousaka, T. Yamaguchi, E. Yashima, Chem. Lett. 2014, 43, 512.
T. Ikai, T. Yoshida, Org. Biomol. Chem. 2019, 17, 8537.
T. Yamamoto, R. Murakami, M. Suginome, Org. Lett. 2021, 23, 8711.
Y. Yoshinaga, T. Yamamoto, M. Suginome, J. Am. Chem. Soc. 2020, 142, 18317.
C. Li, G.-T. Wang, H.-P. Yi, X.-K. Jiang, Z.-T. Li, R.-X. Wang, Org. Lett. 2007, 9, 1797.
C. Zhang, F. Liu, Y. Li, X. Shen, X. Xu, R. Sakai, T. Satoh, T. Kakuchi, Y. Okamoto, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2271.
D. Hirose, A. Isobe, E. Quiñoa, F. Freire, K. Maeda, J. Am. Chem. Soc. 2019, 141, 8592.
T. Ikai, S. Minami, S. Awata, S. Shimizu, T. Yoshida, M. Okubo, K.-I. Shinohara, Polym. Chem. 2018, 9, 5504.
T. Nishikawa, Y. Nagata, M. Suginome, ACS Macro Lett. 2017, 6, 431.
S. Kuriyama, Y. Nagata, M. Suginome, ACS Macro Lett. 2019, 8, 479.
F. Ishiwari, K. Nakazono, Y. Koyama, T. Takata, Chem. Commun. 2011, 47, 11739.
S. Suzuki, F. Ishiwari, K. Nakazono, T. Takata, Chem. Commun. 2012, 48, 6478.
Y. Qiu, H. Yan, J. Wang, Q. Jiang, H. Wang, H. Peng, Y. Liao, X. Xie, B. E. Brycki, Polymer 2020, 188, 122135.
H.-J. Kim, E. Lee, H.-S. Park, M. Lee, J. Am. Chem. Soc. 2007, 129, 10994.
S. Takashima, H. Abe, M. Inouye, Chem. Commun. 2011, 47, 7455.
H. Abe, K. Okada, H. Makida, M. Inouye, Org. Biomol. Chem. 2012, 10, 6930.
M. Waki, H. Abe, M. Inouye, Angew. Chem., Int. Ed. 2007, 46, 3059.
L. Liu, N. Ousaka, M. Horie, F. Mamiya, E. Yashima, Chem. Commun. 2016, 52, 11752.
D.-W. Fu, W. Zhang, H.-L. Cai, Y. Zhang, J.-Z. Ge, R.-G. Xiong, S. D. Huang, J. Am. Chem. Soc. 2011, 133, 12780.
H.-R. Yu, J.-Q. Hu, X.-H. Lu, X.-J. Ju, Z. Liu, R. Xie, W. Wang, L.-Y. Chu, J. Phys. Chem. B 2015, 119, 1696.
S. Fery-Forgues, F. Al-Ali, J. Photochem. Photobiol., C 2004, 5, 139.
S. Peddi, M. C. Bookout, G. N. Vemuri, C. S. Hartley, J. Org. Chem. 2022, 87, 3686.
J. Hu, Z.-Q. Guo, L.-H. Tong, Huaxue Xuebao 1984, 42, 246.
M. Kodaka, J. Am. Chem. Soc. 1993, 115, 3702.
S. Jiang, M. Liu, J. Phys. Chem. B 2004, 108, 2880.
M. Häussler, R. Zheng, J. W. Y. Lam, H. Tong, H. Dong, B. Z. Tang, J. Phys. Chem. B 2004, 108, 10645.
C. Tan, M. R. Pinto, M. E. Kose, I. Ghiviriga, K. S. Schanze, Adv. Mater. 2004, 16, 1208.
M. T. Stone, J. M. Heemstra, J. S. Moore, Acc. Chem. Res. 2006, 39, 11.
M. Banno, T. Yamaguchi, K. Nagai, C. Kaiser, S. Hecht, E. Yashima, J. Am. Chem. Soc. 2012, 134, 8718.
S. Lahiri, J. L. Thompson, J. S. Moore, J. Am. Chem. Soc. 2000, 122, 11315.
Y. Qiu, H. Hu, D. Zhao, J. Wang, H. Wang, Q. Wang, H. Peng, Y. Liao, X. Xie, Polymer 2019, 170, 7.
Y. Qiu, X. Zhao, J. Wang, H. Yan, Q. Jiang, S. Cao, H. Wang, Y. Liao, X. Xie, Polymer 2021, 225, 123771.
L. Brunsveld, E. W. Meijer, R. B. Prince, J. S. Moore, J. Am. Chem. Soc. 2001, 123, 7978.
K. Maeda, L. Hong, T. Nishihara, Y. Nakanishi, Y. Miyauchi, R. Kitaura, N. Ousaka, E. Yashima, H. Ito, K. Itami, J. Am. Chem. Soc. 2016, 138, 11001.
K. Suda, K. Akagi, Macromolecules 2011, 44, 9473.
K. Morino, M. Oobo, E. Yashima, Macromolecules 2005, 38, 3461.
T. Miyagawa, A. Furuko, K. Maeda, H. Katagiri, Y. Furusho, E. Yashima, J. Am. Chem. Soc. 2005, 127, 5018.
G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev. 2004, 104, 2723.
X. Ji, Y. Yao, J. Li, X. Yan, F. Huang, J. Am. Chem. Soc. 2013, 135, 74.
S. Suzuki, K. Matsuura, K. Nakazono, T. Takata, Polym. J. 2014, 46, 355.
H. Abe, S. Takashima, T. Yamamoto, M. Inouye, Chem. Commun. 2009, 45, 2121.
S. Leiras, F. Freire, J. M. Seco, E. Quiñoá, R. Riguera, Chem. Sci. 2013, 4, 2735.
S. Arias, F. Freire, E. Quiñoá, R. Riguera, Polym. Chem. 2015, 6, 4725.

Auteurs

Shuang Cao (S)

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Chenchen Sun (C)

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Jing Wang (J)

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Qian Jiang (Q)

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Yuan Qiu (Y)

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Hong Wang (H)

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Yonggui Liao (Y)

National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China.

Xiaolin Xie (X)

National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Risk Assessment Plant Leaves Isomerism Humans Stereoisomerism
Animals Huntington Disease Mitochondria Neurons Mice

Aminoacid functionalised magnetite nanoparticles Fe

Spoială Angela, Motelica Ludmila, Ilie Cornelia-Ioana et al.
1.00
Magnetite Nanoparticles Tryptophan Biocompatible Materials Microbial Sensitivity Tests Humans

Classifications MeSH