Functional role of the Frizzled linker domain in the Wnt signaling pathway.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
05 05 2022
Historique:
received: 14 06 2021
accepted: 14 04 2022
entrez: 5 5 2022
pubmed: 6 5 2022
medline: 10 5 2022
Statut: epublish

Résumé

The Wnt signaling pathway plays a critical role in the developmental and physiological processes of metazoans. We previously reported that the Frizzled4 (FZD4) linker domain plays an important role in Norrin binding and signaling. However, the question remains whether the FZD linker contributes to Wnt signaling in general. Here, we show that the FZD linker is involved in Wnt binding and affects downstream Wnt signaling. A FZD4 chimera, in which the linker was swapped with that of the non-canonical receptor FZD6, impairs the binding with WNT3A and suppresses the recruitment of LRP6 and Disheveled, resulting in reduced canonical signaling. A similar effect was observed for non-canonical signaling. A FZD6 chimera containing the FZD1 linker showed reduced WNT5A binding and impaired signaling in ERK, JNK, and AKT mediated pathways. Altogether, our results suggest that the FZD linker plays an important role in specific Wnt binding and intracellular Wnt signaling.

Identifiants

pubmed: 35513706
doi: 10.1038/s42003-022-03370-4
pii: 10.1038/s42003-022-03370-4
pmc: PMC9072438
doi:

Substances chimiques

Carrier Proteins 0
Frizzled Receptors 0
Wnt Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

421

Informations de copyright

© 2022. The Author(s).

Références

J Cell Physiol. 2008 Oct;217(1):215-27
pubmed: 18521822
Cell Res. 2015 Sep;25(9):1078-81
pubmed: 26227961
Nature. 1996 Jul 18;382(6588):225-30
pubmed: 8717036
Cell. 2004 Mar 19;116(6):883-95
pubmed: 15035989
Oncogene. 1999 Oct 28;18(44):5959-66
pubmed: 10557084
J Biol Chem. 2018 Nov 16;293(46):17875-17887
pubmed: 30237173
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):8787-8792
pubmed: 30104375
Genome Biol. 2004;5(7):234
pubmed: 15239825
Org Biomol Chem. 2020 Dec 28;18(48):9816-9825
pubmed: 33290484
Front Immunol. 2019 Dec 16;10:2872
pubmed: 31921137
Elife. 2015 Jul 09;4:
pubmed: 26158506
Science. 2012 Jul 6;337(6090):59-64
pubmed: 22653731
Cell Signal. 2007 Dec;19(12):2498-506
pubmed: 17804197
Mol Carcinog. 2021 Jan;60(1):25-37
pubmed: 33283877
Nat Struct Mol Biol. 2019 May;26(5):372-379
pubmed: 31036956
Protein Expr Purif. 2014 Mar;95:240-7
pubmed: 24480187
Elife. 2016 Feb 23;5:
pubmed: 26902720
Cell Signal. 2014 Feb;26(2):260-7
pubmed: 24269653
Nature. 2003 May 22;423(6938):448-52
pubmed: 12717451
Genes Cells. 2005 Sep;10(9):919-28
pubmed: 16115200
Nat Commun. 2017 Aug 9;8(1):226
pubmed: 28790300
Trends Pharmacol Sci. 2007 Oct;28(10):518-25
pubmed: 17884187
Protein Sci. 2008 Dec;17(12):2120-6
pubmed: 18787202
Cancers (Basel). 2016 Aug 26;8(9):
pubmed: 27571105
Pharmacol Rev. 2010 Dec;62(4):632-67
pubmed: 21079039
Methods Cell Biol. 2019;149:131-140
pubmed: 30616815
Neuron. 2017 Aug 30;95(5):1056-1073.e5
pubmed: 28803732
Curr Opin Pharmacol. 2010 Feb;10(1):53-8
pubmed: 19910252
Cell Signal. 2014 Sep;26(9):1943-9
pubmed: 24873871
Int J Mol Sci. 2019 Aug 26;20(17):
pubmed: 31454915
Nature. 2018 Aug;560(7720):666-670
pubmed: 30135577
Elife. 2019 Jun 21;8:
pubmed: 31225798
Science. 2018 Aug 17;361(6403):
pubmed: 30026314
Br J Pharmacol. 2017 Dec;174(24):4564-4574
pubmed: 28941231
J Cell Sci. 2003 Jun 15;116(Pt 12):2541-50
pubmed: 12734397
Cell Signal. 2010 May;22(5):717-27
pubmed: 20006983
Oncogene. 2017 Mar;36(11):1461-1473
pubmed: 27617575
Nature. 2017 May 11;545(7653):234-237
pubmed: 28467818
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4147-4152
pubmed: 28377511
J Biol Chem. 2002 Nov 1;277(44):41762-9
pubmed: 12205098
ACS Pharmacol Transl Sci. 2021 May 11;4(3):1235-1245
pubmed: 34151213
Genes Dev. 2017 May 1;31(9):916-926
pubmed: 28546512
Elife. 2020 Aug 07;9:
pubmed: 32762848
Cell Chem Biol. 2020 May 21;27(5):598-609.e4
pubmed: 32220333

Auteurs

Seung-Bum Ko (SB)

Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

Emiko Mihara (E)

Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.

Yedarm Park (Y)

Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

Kyeonghwan Roh (K)

Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

Chanhee Kang (C)

Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

Junichi Takagi (J)

Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.

Injin Bang (I)

Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea. injin.bang@nyulangone.org.
Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, 10016, NY, USA. injin.bang@nyulangone.org.

Hee-Jung Choi (HJ)

Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea. choihj@snu.ac.kr.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Animals Humans Sarcomeres Muscle Proteins Carrier Proteins
Humans DNA Methylation Female Male Alcohol Oxidoreductases
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins

Classifications MeSH