Early brain and abdominal oxygenation in extremely low birth weight infants.


Journal

Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714

Informations de publication

Date de publication:
10 2022
Historique:
received: 24 09 2021
accepted: 10 04 2022
revised: 24 02 2022
pubmed: 6 5 2022
medline: 26 10 2022
entrez: 5 5 2022
Statut: ppublish

Résumé

Extremely low birth weight (ELBW) infants are at risk for end-organ hypoxia and ischemia. Regional tissue oxygenation of the brain and gut as monitored with near-infrared spectroscopy (NIRS) may change with postnatal age, but normal ranges are not well defined. A prospective study of ELBW preterm infants utilized NIRS monitoring to assess changes in cerebral and mesenteric saturation (Csat and Msat) over the first week after birth. This secondary study of a multicenter trial comparing hemoglobin transfusion thresholds assessed cerebral and mesenteric fractional tissue oxygen extraction (cFTOE and mFTOE) and relationships with perinatal variables. In 124 infants, both Csat and Msat declined over the first week, with a corresponding increase in oxygen extraction. With lower gestational age, lower birth weight, and 5-min Apgar score ≤5, there was a greater increase in oxygen extraction in the brain compared to the gut. Infants managed with a lower hemoglobin transfusion threshold receiving ≥2 transfusions in the first week had the lowest Csat and highest cFTOE (p < 0.001). Brain oxygen extraction preferentially increased in more immature and anemic preterm infants. NIRS monitoring may enhance understanding of cerebral and mesenteric oxygenation patterns and inform future protective strategies in the preterm ELBW population. Simultaneous monitoring of cerebral and mesenteric tissue saturation demonstrates the balance of oxygenation between preterm brain and gut and may inform protective strategies. Over the first week, oxygen saturation of the brain and gut declines as oxygen extraction increases. A low hemoglobin transfusion threshold is associated with lower cerebral saturation and higher cerebral oxygen extraction compared to a high hemoglobin transfusion threshold, although this did not translate into clinically relevant differences in the TOP trial primary outcome. Greater oxygen extraction by the brain compared to the gut occurs with lower gestational age, lower birth weight, and 5-min Apgar score ≤5.

Sections du résumé

BACKGROUND
Extremely low birth weight (ELBW) infants are at risk for end-organ hypoxia and ischemia. Regional tissue oxygenation of the brain and gut as monitored with near-infrared spectroscopy (NIRS) may change with postnatal age, but normal ranges are not well defined.
METHODS
A prospective study of ELBW preterm infants utilized NIRS monitoring to assess changes in cerebral and mesenteric saturation (Csat and Msat) over the first week after birth. This secondary study of a multicenter trial comparing hemoglobin transfusion thresholds assessed cerebral and mesenteric fractional tissue oxygen extraction (cFTOE and mFTOE) and relationships with perinatal variables.
RESULTS
In 124 infants, both Csat and Msat declined over the first week, with a corresponding increase in oxygen extraction. With lower gestational age, lower birth weight, and 5-min Apgar score ≤5, there was a greater increase in oxygen extraction in the brain compared to the gut. Infants managed with a lower hemoglobin transfusion threshold receiving ≥2 transfusions in the first week had the lowest Csat and highest cFTOE (p < 0.001).
CONCLUSION
Brain oxygen extraction preferentially increased in more immature and anemic preterm infants. NIRS monitoring may enhance understanding of cerebral and mesenteric oxygenation patterns and inform future protective strategies in the preterm ELBW population.
IMPACT
Simultaneous monitoring of cerebral and mesenteric tissue saturation demonstrates the balance of oxygenation between preterm brain and gut and may inform protective strategies. Over the first week, oxygen saturation of the brain and gut declines as oxygen extraction increases. A low hemoglobin transfusion threshold is associated with lower cerebral saturation and higher cerebral oxygen extraction compared to a high hemoglobin transfusion threshold, although this did not translate into clinically relevant differences in the TOP trial primary outcome. Greater oxygen extraction by the brain compared to the gut occurs with lower gestational age, lower birth weight, and 5-min Apgar score ≤5.

Identifiants

pubmed: 35513716
doi: 10.1038/s41390-022-02082-z
pii: 10.1038/s41390-022-02082-z
pmc: PMC9588487
mid: NIHMS1799946
doi:

Substances chimiques

Oxygen S88TT14065
Hemoglobins 0

Types de publication

Multicenter Study Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1034-1041

Subventions

Organisme : NICHD NIH HHS
ID : UG1 HD068263
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD021373
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD087226
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD053089
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD027856
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD034216
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD027904
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD027880
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001117
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD053109
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD027851
Pays : United States
Organisme : NICHD NIH HHS
ID : U10 HD036790
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD068278
Pays : United States
Organisme : NICHD NIH HHS
ID : U01 HD036790
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL112776
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL122167
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD068270
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD068244
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD027853
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD087229
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL112748
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD040689
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD068284
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD021385
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD040492
Pays : United States
Organisme : NICHD NIH HHS
ID : UG1 HD021364
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.

Références

Bruckner, M. et al. Normal regional tissue oxygen saturation in neonates: a systematic qualitative review. Pediatr. Res. https://doi.org/10.1038/s41390-021-01786-y (2021).
Alderliesten, T. et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr. Res. 79, 55–64 (2016).
pubmed: 26389823 doi: 10.1038/pr.2015.186
McNeill, S., Gatenby, J. C., McElroy, S. & Engelhardt, B. Normal cerebral, renal and abdominal regional oxygen saturations using near-infrared spectroscopy in preterm infants. J. Perinatol. 31, 51–57 (2011).
pubmed: 20539273 doi: 10.1038/jp.2010.71
Hyttel-Sorensen, S. et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ 350, g7635 (2015).
pubmed: 25569128 pmcid: 4283997 doi: 10.1136/bmj.g7635
Hoeller, N. et al. Cerebral and peripheral muscle oxygenation and perfusion: course in moderate and late preterm neonates during the first day after birth. Physiol. Int. https://doi.org/10.1556/2060.2020.00028 (2020).
Cohen, E. et al. Growth restriction and gender influence cerebral oxygenation in preterm neonates. Arch. Dis. Child Fetal Neonatal Ed. 101, F156–F161 (2016).
pubmed: 26311070 doi: 10.1136/archdischild-2015-308843
Cortez, J. et al. Noninvasive evaluation of splanchnic tissue oxygenation using near-infrared spectroscopy in preterm neonates. J. Matern. Fetal Neonatal Med. 24, 574–582 (2011).
pubmed: 20828232 doi: 10.3109/14767058.2010.511335
Kuik, S. J. et al. The effect of enteral bolus feeding on regional intestinal oxygen saturation in preterm infants is age-dependent: a longitudinal observational study. BMC Pediatr. 19, 404 (2019).
pubmed: 31684920 pmcid: 6827212 doi: 10.1186/s12887-019-1805-z
van der Heide, M. et al. Regional splanchnic oxygen saturation for preterm infants in the first week after birth: reference values. Pediatr. Res. https://doi.org/10.1038/s41390-020-01323-3 (2021).
Kirpalani, H. et al. Higher or lower hemoglobin transfusion thresholds for preterm infants. N. Engl. J. Med. 383, 2639–2651 (2020).
pubmed: 33382931 pmcid: 8487591 doi: 10.1056/NEJMoa2020248
Metcalfe, K. H. M., Stienstra, R. & McHoney, M. NIRS as a biomarker of bowel ischaemia & surgical pathology: a meta-analysis of studies in newborns. Early Hum. Dev. 161, 105437 (2021).
pubmed: 34411803 doi: 10.1016/j.earlhumdev.2021.105437
Gillam-Krakauer, M. et al. Correlation of abdominal rSO2 with superior mesenteric artery velocities in preterm infants. J. Perinatol. 33, 609–612 (2013).
pubmed: 23392317 pmcid: 3655136 doi: 10.1038/jp.2013.3
Cerbo, R. M. et al. Global perfusion assessment and tissue oxygen saturation in preterm infants: where are we? Early Hum. Dev. 89(Suppl 1), S44–S46 (2013).
pubmed: 23809350 doi: 10.1016/S0378-3782(13)70014-8
Banerjee, J., Leung, T. S. & Aladangady, N. Cerebral blood flow and oximetry response to blood transfusion in relation to chronological age in preterm infants. Early Hum. Dev. 97, 1–8 (2016).
pubmed: 26619762 doi: 10.1016/j.earlhumdev.2015.10.017
Mohamed, M. A. et al. Changes in cerebral tissue oxygenation and fractional oxygen extraction with gestational age and postnatal maturation in preterm infants. J. Perinatol. https://doi.org/10.1038/s41372-020-00794-w (2020).
Chock, V. Y. et al. Cerebral oxygenation and autoregulation in preterm infants (Early NIRS Study). J. Pediatr. 227, 94–100.e1 (2020).
pubmed: 32818482 doi: 10.1016/j.jpeds.2020.08.036
Patel, A. K. et al. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis. Pediatr. Crit. Care Med. 15, 735–741 (2014).
pubmed: 25068253 doi: 10.1097/PCC.0000000000000211
Havranek, T., Miladinovic, B., Wadhawan, R. & Carver, J. D. Factors that affect the postnatal increase in superior mesenteric artery blood flow velocity in very low birth weight preterm infants. J. Perinat. Med. 40, 565–570 (2012).
pubmed: 22945276 doi: 10.1515/jpm-2011-0235
Maruyama, K., Koizumi, T., Tomomasa, T. & Morikawa, A. Intestinal blood-flow velocity in uncomplicated preterm infants during the early neonatal period. Pediatr. Radiol. 29, 472–477 (1999).
pubmed: 10369910 doi: 10.1007/s002470050621
Martinussen, M., Brubakk, A. M., Vik, T. & Yao, A. C. Mesenteric blood flow velocity and its relation to transitional circulatory adaptation in appropriate for gestational age preterm infants. Pediatr. Res. 39, 275–280 (1996).
pubmed: 8825800 doi: 10.1203/00006450-199602000-00015
Thompson, A., Silva, C. T., Gork, A. S., Wang, D. & Ehrenkranz, R. A. Intestinal blood flow by Doppler ultrasound: the impact of gestational age and time from first enteral feeding in preterm neonates. Am. J. Perinatol. 31, 261–268 (2014).
pubmed: 23729284
Dani, C., Pratesi, S., Fontanelli, G., Barp, J. & Bertini, G. Blood transfusions increase cerebral, splanchnic, and renal oxygenation in anemic preterm infants. Transfusion 50, 1220–1226 (2010).
pubmed: 20113454 doi: 10.1111/j.1537-2995.2009.02575.x
Bennet, L., Rossenrode, S., Gunning, M. I., Gluckman, P. D. & Gunn, A. J. The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J. Physiol. 517(Pt 1), 247–257 (1999).
pubmed: 10226163 pmcid: 2269318 doi: 10.1111/j.1469-7793.1999.0247z.x
Andersen, C. C. et al. The cerebral critical oxygen threshold of ventilated preterm lambs and the influence of antenatal inflammation. J. Appl. Physiol. (1985) 111, 775–781 (2011).
doi: 10.1152/japplphysiol.00214.2011
Bozzetti, V. et al. Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition. J. Matern. Fetal Neonatal Med. 29, 443–446 (2016).
pubmed: 25604088 doi: 10.3109/14767058.2014.1003539
Howarth, C. et al. Cerebral oxygenation in preterm infants with necrotizing enterocolitis. Pediatrics 146, e20200337 (2020).
Hintz, S. R. et al. Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics 115, 696–703 (2005).
pubmed: 15741374 doi: 10.1542/peds.2004-0569
Bailey, S. M., Hendricks-Muñoz, K. D., Wells, J. T. & Mally, P. Packed red blood cell transfusion increases regional cerebral and splanchnic tissue oxygen saturation in anemic symptomatic preterm infants. Am. J. Perinatol. 27, 445–453 (2010).
pubmed: 20099219 doi: 10.1055/s-0030-1247598
Mintzer, J. P., Parvez, B. & La Gamma, E. F. Regional tissue oxygen extraction and severity of anemia in very low birth weight neonates: a pilot NIRS analysis. Am. J. Perinatol. 35, 1411–1418 (2018).
pubmed: 29906796 doi: 10.1055/s-0038-1660458
Whitehead, H. V., Vesoulis, Z. A., Maheshwari, A., Rao, R. & Mathur, A. M. Anemia of prematurity and cerebral near-infrared spectroscopy: should transfusion thresholds in preterm infants be revised? J. Perinatol. 38, 1022–1029 (2018).
pubmed: 29740185 pmcid: 6136959 doi: 10.1038/s41372-018-0120-0
Whitehead, H. V., Vesoulis, Z. A., Maheshwari, A., Rambhia, A. & Mathur, A. M. Progressive anemia of prematurity is associated with a critical increase in cerebral oxygen extraction. Early Hum. Dev. 140, 104891 (2019).
pubmed: 31669878 pmcid: 7180102 doi: 10.1016/j.earlhumdev.2019.104891
van Hoften, J. C. R., Verhagen, E. A., Keating, P., ter Horst, H. J. & Bos, A. F. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Arch. Dis. Child. Fetal Neonatal Ed. 95, F352–F358 (2010).
pubmed: 20466739 doi: 10.1136/adc.2009.163592
Sandal, G. et al. Assessment of red blood cell transfusion and transfusion duration on cerebral and mesenteric oxygenation using near-infrared spectroscopy in preterm infants with symptomatic anemia. Transfusion 54, 1100–1105 (2014).
pubmed: 23901886 doi: 10.1111/trf.12359
Jain, D., D’Ugard, C., Bancalari, E. & Claure, N. Cerebral oxygenation in preterm infants receiving transfusion. Pediatr. Res. 85, 786–789 (2019).
pubmed: 30587847 doi: 10.1038/s41390-018-0266-7
Jani, P. et al. Liberal hemoglobin threshold affects cerebral arterial pulsed Doppler and cardiac output, not cerebral tissue oxygenation: a prospective cohort study in anemic preterm infants. Transfusion 59, 3093–3101 (2019).
pubmed: 31313334 doi: 10.1111/trf.15452
Akotia, D. H., Durham, J. T., Arnell, K. M., Petruzzelli, D. L. & Katheria, A. C. Relationship between near-infrared spectroscopy and transabdominal ultrasonography: noninvasive monitoring of intestinal function in neonates. Med. Sci. Monit. 22, 61–68 (2016).
pubmed: 26736134 pmcid: 4708098 doi: 10.12659/MSM.895730
Thompson, A., Benni, P., Seyhan, S. & Ehrenkranz, R. Meconium and transitional stools may cause interference with near-infrared spectroscopy measurements of intestinal oxygen saturation in preterm infants. Adv. Exp. Med. Biol. 765, 287–292 (2013).
pubmed: 22879046 doi: 10.1007/978-1-4614-4989-8_40

Auteurs

Valerie Y Chock (VY)

Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, USA. vchock@stanford.edu.

Emily Smith (E)

Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, Rockville, NC, USA.

Sylvia Tan (S)

Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, Rockville, NC, USA.

M Bethany Ball (MB)

Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, USA.

Abhik Das (A)

Social, Statistical and Environmental Sciences Unit, RTI International, Rockville, MD, USA.

Susan R Hintz (SR)

Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, USA.

Haresh Kirpalani (H)

Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.

Edward F Bell (EF)

Department of Pediatrics, University of Iowa, Iowa City, IA, USA.

Lina F Chalak (LF)

Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Waldemar A Carlo (WA)

Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, USA.

C Michael Cotten (CM)

Department of Pediatrics, Duke University, Durham, NC, USA.

John A Widness (JA)

Department of Pediatrics, University of Iowa, Iowa City, IA, USA.

Kathleen A Kennedy (KA)

Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA.

Robin K Ohls (RK)

University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
Department of Pediatrics, Division of Neonatology, University of Utah School of Medicine, Salt Lake City, UT, USA.

Ruth B Seabrook (RB)

Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA.

Ravi M Patel (RM)

Emory University School of Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, GA, USA.

Abbot R Laptook (AR)

Department of Pediatrics, Women & Infants Hospital, Brown University, Providence, RI, USA.

Toni Mancini (T)

Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.

Gregory M Sokol (GM)

Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.

Michele C Walsh (MC)

Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.

Bradley A Yoder (BA)

Department of Pediatrics, Division of Neonatology, University of Utah School of Medicine, Salt Lake City, UT, USA.

Brenda B Poindexter (BB)

Emory University School of Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, GA, USA.

Sanjay Chawla (S)

Department of Pediatrics, Wayne State University, Detroit, MI, USA.

Carl T D'Angio (CT)

University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.

Rosemary D Higgins (RD)

Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
College of Health and Human Services, George Mason University, Fairfax, VA, USA.

Krisa P Van Meurs (KP)

Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH