3'untranslated regions of tumor suppressor genes evolved specific features to favor cancer resistance.
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
03
12
2021
accepted:
28
04
2022
revised:
26
04
2022
pubmed:
7
5
2022
medline:
9
6
2022
entrez:
6
5
2022
Statut:
ppublish
Résumé
Cancer-related genes have evolved specific genetic and genomic features to favor tumor suppression. Previously we reported that tumor suppressor genes (TSGs) acquired high promoter CpG dinucleotide frequencies during evolution to maintain high expression in normal tissues and resist cancer-specific downregulation. In this study, we investigated whether 3'untranslated regions (3'UTRs) of TSGs have evolved specific features to carry out similar functions. We found that 3'UTRs of TSGs, especially those involved in multiple histological types and pediatric cancers, are longer than those of non-cancer genes. 3'UTRs of TSGs also exhibit higher density of binding sites for RNA-binding proteins (RBPs), particularly those having high affinities to C-rich motifs. Both longer 3'UTR length and RBP binding sites enrichment are correlated with higher gene expression in normal tissues across tissue types. Moreover, both features together with the correlated N
Identifiants
pubmed: 35523946
doi: 10.1038/s41388-022-02343-5
pii: 10.1038/s41388-022-02343-5
doi:
Substances chimiques
3' Untranslated Regions
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3278-3288Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;340:1546–58.
doi: 10.1126/science.1235122
Thomas MA. Evolutionary dynamics of oncogenes and tumor suppressor genes: higher intensities of purifying selection than other genes. Mol Biol Evol. 2003;20:964–8.
pubmed: 12716985
doi: 10.1093/molbev/msg110
Wu WKK, Li X, Wang X, Dai RZW, Cheng ASL, Wang MHT, et al. Oncogenes without a neighboring tumor-suppressor gene are more prone to amplification. Mol Biol Evol. 2017;34:903–7.
pubmed: 28087780
pmcid: 5400371
doi: 10.1093/molbev/msx170
Wang X, Li X, Zhang L, Wong SH, Wang MHT, Tse G, et al. Oncogenes expand during evolution to withstand somatic amplification. Ann Oncol. 2018;29:2254–60.
pubmed: 30204835
doi: 10.1093/annonc/mdy397
Huang D, Wang X, Liu Y, Huang Z, Hu X, Hu W. et al. Multi-omic analysis suggests tumor suppressor genes evolved specific promoter features to optimize cancer resistance. Brief Bioinform. 2021;22:bbab040.
pubmed: 33783485
doi: 10.1093/bib/bbab040
Dolnik A, Engelmann JC, Scharfenberger-Schmeer M, Mauch J, Kelkenberg-Schade S, Haldemann B, et al. Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood. 2012;120:e83–92.
pubmed: 22976956
doi: 10.1182/blood-2011-12-401471
Ren G-X, Guo X-P, Sun Y-C. Regulatory 3′ untranslated regions of bacterial mRNAs. Front Microbiol. 2017;8:1276.
pubmed: 28740488
pmcid: 5502269
doi: 10.3389/fmicb.2017.01276
Mayr C. Regulation by 3′-untranslated regions. Annu Rev Genet. 2017;51:171–94.
pubmed: 28853924
doi: 10.1146/annurev-genet-120116-024704
Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature. 2005;434:338–45.
pubmed: 15735639
pmcid: 2923337
doi: 10.1038/nature03441
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–50.
pubmed: 16024819
pmcid: 1182216
doi: 10.1101/gr.3715005
Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9:563–76.
pubmed: 22614827
doi: 10.4161/rna.20231
Runge S, Nielsen FC, Nielsen J, Lykke-Andersen J, Wewer UM, Christiansen J. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein. J Biol Chem. 2000;275:29562–9.
pubmed: 10875929
doi: 10.1074/jbc.M001156200
Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. 2006;103:4034–9.
Gealy C, Denson M, Humphreys C, McSharry B, Wilkinson G, Caswell R. Posttranscriptional suppression of interleukin-6 production by human cytomegalovirus. J Virol. 2005;79:472–85.
pubmed: 15596840
pmcid: 538736
doi: 10.1128/JVI.79.1.472-485.2005
Linker K, Pautz A, Fechir M, Hubrich T, Greeve J, Kleinert H. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res. 2005;33:4813–27.
pubmed: 16126846
pmcid: 1192834
doi: 10.1093/nar/gki797
Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019;442:252–61.
pubmed: 30423408
doi: 10.1016/j.canlet.2018.11.006
Yin H, Wang G, Ma L, Yi SV, Zhang Z. What Signatures dominantly associate with gene age? Genome Biol Evol. 2016;8:3083–9.
pubmed: 27609935
pmcid: 5174733
doi: 10.1093/gbe/evw216
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.
pubmed: 21546393
pmcid: 3106198
doi: 10.1093/bioinformatics/btr260
Yu H, Wang J, Sheng Q, Liu Q, Shyr Y. BeRBP: binding estimation for human RNA-binding proteins. Nucleic Acids Res. 2019;47:e26.
pubmed: 30590704
doi: 10.1093/nar/gky1294
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.
pubmed: 7584402
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–8.
pubmed: 21330290
pmcid: 3065696
doi: 10.1093/bioinformatics/btr064
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol. 2007;8:R24.
Alkan SA, Martincic K, Milcarek C. The hnRNPs F and H2 bind to similar sequences to influence gene expression. Biochem J. 2006;393:361–71.
pubmed: 16171461
doi: 10.1042/BJ20050538
Yabe-Wada T, Philpott CC, Onai N. PCBP2 post-transcriptionally regulates sortilin expression by binding to a C-rich element in its 3′ UTR. FEBS Open Bio. 2020;10:407–13.
pubmed: 31961070
pmcid: 7050257
doi: 10.1002/2211-5463.12794
Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3' UTR evolution. Cell. 2005;123:1133–46.
pubmed: 16337999
doi: 10.1016/j.cell.2005.11.023
Zhang C, Fu J, Zhou Y. A review in research progress concerning m6A methylation and immunoregulation. Front Immunol. 2019;10:922.
pubmed: 31080453
pmcid: 6497756
doi: 10.3389/fimmu.2019.00922
Huang H, Weng H, Deng X, Chen J. RNA modifications in cancer: functions, mechanisms, and therapeutic implications. Annu Rev Cancer Biol. 2020;4:221–40.
doi: 10.1146/annurev-cancerbio-030419-033357
Liu S, Zhu A, He C, Chen M. REPIC: a database for exploring the N 6-methyladenosine methylome. Genome Biol. 2020;21:100.
pubmed: 32345346
pmcid: 7187508
doi: 10.1186/s13059-020-02012-4
Xiao S, Cao S, Huang Q, Xia L, Deng M, Yang M, et al. The RNA N6-methyladenosine modification landscape of human fetal tissues. Nat Cell Biol. 2019;21:651–61.
pubmed: 31036937
doi: 10.1038/s41556-019-0315-4
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 2012;149:1635–46.
pubmed: 22608085
pmcid: 3383396
doi: 10.1016/j.cell.2012.05.003
Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371–85.
pubmed: 29625053
pmcid: 6029450
doi: 10.1016/j.cell.2018.02.060
Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.
doi: 10.1038/nature24277
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.
pubmed: 11752295
pmcid: 99122
doi: 10.1093/nar/30.1.207
Yin H, Li M, Xia L, He C, Zhang Z. Computational determination of gene age and characterization of evolutionary dynamics in human. Brief Bioinform. 2019;20:2141–9.
pubmed: 30184145
doi: 10.1093/bib/bby074
Vishnoi A, Kryazhimskiy S, Bazykin GA, Hannenhalli S, Plotkin JB. Young proteins experience more variable selection pressures than old proteins. Genome Res. 2010;20:1574–81.
pubmed: 20921233
pmcid: 2963820
doi: 10.1101/gr.109595.110
Albà MM, Castresana J. Inverse relationship between evolutionary rate and age of mammalian genes. Mol Biol Evol. 2005;22:598–606.
pubmed: 15537804
doi: 10.1093/molbev/msi045
Warnefors M, Eyre-Walker A. The accumulation of gene regulation through time. Genome Biol Evol. 2011;3:667–73.
pubmed: 21398425
pmcid: 3157833
doi: 10.1093/gbe/evr019
Zhao Y, Chen Y, Jin M, Wang J. The crosstalk between m6A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics. 2021;11:4549–66.
pubmed: 33754077
pmcid: 7977459
doi: 10.7150/thno.54967
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N 6 -methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.
pubmed: 29476152
pmcid: 5826585
doi: 10.1038/s41556-018-0045-z
Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, et al. Single-base mapping of m6A by an antibody-independent method. Sci Adv. 2019;5:250–3.
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.
pubmed: 23770567
pmcid: 3919509
doi: 10.1038/nature12213
Zhao M, Kim P, Mitra R, Zhao J, Zhao Z. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2016;44:D1023–31.
pubmed: 26590405
doi: 10.1093/nar/gkv1268
Lever J, Zhao EY, Grewal J, Jones MR, Jones SJM. CancerMine: a literature-mined resource for drivers, oncogenes and tumor suppressors in cancer. Nat Methods. 2019;16:505–7.
pubmed: 31110280
doi: 10.1038/s41592-019-0422-y
Dweep H, Sticht C, Pandey P, Gretz N. MiRWalk—database: prediction of possible miRNA binding sites by ‘ walking’ the genes of three genomes. J Biomed Inf. 2011;44:839–47.
doi: 10.1016/j.jbi.2011.05.002
von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, et al. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–7.
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013–2015. http://www.repeatmasker.org .
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.
pubmed: 22460905
pmcid: 3320027
doi: 10.1038/nature11003
Chen CL, Rappailles A, Duquenne L, Huvet M, Guilbaud G, Farinelli L, et al. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 2010;20:447–57.
pubmed: 20103589
pmcid: 2847748
doi: 10.1101/gr.098947.109
Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
pubmed: 19815776
pmcid: 2858594
doi: 10.1126/science.1181369
Brouwer-Visser J, Cheng WY, Bauer-Mehren A, Maisel D, Lechner K, Andersson E, et al. Regulatory T-cell genes drive altered immune microenvironment in adult solid cancers and allow for immune contextual patient subtyping. Cancer Epidemiol Biomark Prev. 2018;27:103–12.
doi: 10.1158/1055-9965.EPI-17-0461
Guo M, Tomoshige K, Meister M, Muley T, Fukazawa T, Tsuchiya T, et al. Gene signature driving invasive mucinous adenocarcinoma of the lung. EMBO Mol Med. 2017;9:462–81.
pubmed: 28255028
pmcid: 5376761
doi: 10.15252/emmm.201606711
Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46:225–33.
pubmed: 24487277
pmcid: 4636053
doi: 10.1038/ng.2891