3'untranslated regions of tumor suppressor genes evolved specific features to favor cancer resistance.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
06 2022
Historique:
received: 03 12 2021
accepted: 28 04 2022
revised: 26 04 2022
pubmed: 7 5 2022
medline: 9 6 2022
entrez: 6 5 2022
Statut: ppublish

Résumé

Cancer-related genes have evolved specific genetic and genomic features to favor tumor suppression. Previously we reported that tumor suppressor genes (TSGs) acquired high promoter CpG dinucleotide frequencies during evolution to maintain high expression in normal tissues and resist cancer-specific downregulation. In this study, we investigated whether 3'untranslated regions (3'UTRs) of TSGs have evolved specific features to carry out similar functions. We found that 3'UTRs of TSGs, especially those involved in multiple histological types and pediatric cancers, are longer than those of non-cancer genes. 3'UTRs of TSGs also exhibit higher density of binding sites for RNA-binding proteins (RBPs), particularly those having high affinities to C-rich motifs. Both longer 3'UTR length and RBP binding sites enrichment are correlated with higher gene expression in normal tissues across tissue types. Moreover, both features together with the correlated N

Identifiants

pubmed: 35523946
doi: 10.1038/s41388-022-02343-5
pii: 10.1038/s41388-022-02343-5
doi:

Substances chimiques

3' Untranslated Regions 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3278-3288

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;340:1546–58.
doi: 10.1126/science.1235122
Thomas MA. Evolutionary dynamics of oncogenes and tumor suppressor genes: higher intensities of purifying selection than other genes. Mol Biol Evol. 2003;20:964–8.
pubmed: 12716985 doi: 10.1093/molbev/msg110
Wu WKK, Li X, Wang X, Dai RZW, Cheng ASL, Wang MHT, et al. Oncogenes without a neighboring tumor-suppressor gene are more prone to amplification. Mol Biol Evol. 2017;34:903–7.
pubmed: 28087780 pmcid: 5400371 doi: 10.1093/molbev/msx170
Wang X, Li X, Zhang L, Wong SH, Wang MHT, Tse G, et al. Oncogenes expand during evolution to withstand somatic amplification. Ann Oncol. 2018;29:2254–60.
pubmed: 30204835 doi: 10.1093/annonc/mdy397
Huang D, Wang X, Liu Y, Huang Z, Hu X, Hu W. et al. Multi-omic analysis suggests tumor suppressor genes evolved specific promoter features to optimize cancer resistance. Brief Bioinform. 2021;22:bbab040.
pubmed: 33783485 doi: 10.1093/bib/bbab040
Dolnik A, Engelmann JC, Scharfenberger-Schmeer M, Mauch J, Kelkenberg-Schade S, Haldemann B, et al. Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood. 2012;120:e83–92.
pubmed: 22976956 doi: 10.1182/blood-2011-12-401471
Ren G-X, Guo X-P, Sun Y-C. Regulatory 3′ untranslated regions of bacterial mRNAs. Front Microbiol. 2017;8:1276.
pubmed: 28740488 pmcid: 5502269 doi: 10.3389/fmicb.2017.01276
Mayr C. Regulation by 3′-untranslated regions. Annu Rev Genet. 2017;51:171–94.
pubmed: 28853924 doi: 10.1146/annurev-genet-120116-024704
Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature. 2005;434:338–45.
pubmed: 15735639 pmcid: 2923337 doi: 10.1038/nature03441
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–50.
pubmed: 16024819 pmcid: 1182216 doi: 10.1101/gr.3715005
Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9:563–76.
pubmed: 22614827 doi: 10.4161/rna.20231
Runge S, Nielsen FC, Nielsen J, Lykke-Andersen J, Wewer UM, Christiansen J. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein. J Biol Chem. 2000;275:29562–9.
pubmed: 10875929 doi: 10.1074/jbc.M001156200
Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. 2006;103:4034–9.
Gealy C, Denson M, Humphreys C, McSharry B, Wilkinson G, Caswell R. Posttranscriptional suppression of interleukin-6 production by human cytomegalovirus. J Virol. 2005;79:472–85.
pubmed: 15596840 pmcid: 538736 doi: 10.1128/JVI.79.1.472-485.2005
Linker K, Pautz A, Fechir M, Hubrich T, Greeve J, Kleinert H. Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res. 2005;33:4813–27.
pubmed: 16126846 pmcid: 1192834 doi: 10.1093/nar/gki797
Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019;442:252–61.
pubmed: 30423408 doi: 10.1016/j.canlet.2018.11.006
Yin H, Wang G, Ma L, Yi SV, Zhang Z. What Signatures dominantly associate with gene age? Genome Biol Evol. 2016;8:3083–9.
pubmed: 27609935 pmcid: 5174733 doi: 10.1093/gbe/evw216
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.
pubmed: 21546393 pmcid: 3106198 doi: 10.1093/bioinformatics/btr260
Yu H, Wang J, Sheng Q, Liu Q, Shyr Y. BeRBP: binding estimation for human RNA-binding proteins. Nucleic Acids Res. 2019;47:e26.
pubmed: 30590704 doi: 10.1093/nar/gky1294
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36.
pubmed: 7584402
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–8.
pubmed: 21330290 pmcid: 3065696 doi: 10.1093/bioinformatics/btr064
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol. 2007;8:R24.
Alkan SA, Martincic K, Milcarek C. The hnRNPs F and H2 bind to similar sequences to influence gene expression. Biochem J. 2006;393:361–71.
pubmed: 16171461 doi: 10.1042/BJ20050538
Yabe-Wada T, Philpott CC, Onai N. PCBP2 post-transcriptionally regulates sortilin expression by binding to a C-rich element in its 3′ UTR. FEBS Open Bio. 2020;10:407–13.
pubmed: 31961070 pmcid: 7050257 doi: 10.1002/2211-5463.12794
Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3' UTR evolution. Cell. 2005;123:1133–46.
pubmed: 16337999 doi: 10.1016/j.cell.2005.11.023
Zhang C, Fu J, Zhou Y. A review in research progress concerning m6A methylation and immunoregulation. Front Immunol. 2019;10:922.
pubmed: 31080453 pmcid: 6497756 doi: 10.3389/fimmu.2019.00922
Huang H, Weng H, Deng X, Chen J. RNA modifications in cancer: functions, mechanisms, and therapeutic implications. Annu Rev Cancer Biol. 2020;4:221–40.
doi: 10.1146/annurev-cancerbio-030419-033357
Liu S, Zhu A, He C, Chen M. REPIC: a database for exploring the N 6-methyladenosine methylome. Genome Biol. 2020;21:100.
pubmed: 32345346 pmcid: 7187508 doi: 10.1186/s13059-020-02012-4
Xiao S, Cao S, Huang Q, Xia L, Deng M, Yang M, et al. The RNA N6-methyladenosine modification landscape of human fetal tissues. Nat Cell Biol. 2019;21:651–61.
pubmed: 31036937 doi: 10.1038/s41556-019-0315-4
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 2012;149:1635–46.
pubmed: 22608085 pmcid: 3383396 doi: 10.1016/j.cell.2012.05.003
Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371–85.
pubmed: 29625053 pmcid: 6029450 doi: 10.1016/j.cell.2018.02.060
Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.
doi: 10.1038/nature24277
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.
pubmed: 11752295 pmcid: 99122 doi: 10.1093/nar/30.1.207
Yin H, Li M, Xia L, He C, Zhang Z. Computational determination of gene age and characterization of evolutionary dynamics in human. Brief Bioinform. 2019;20:2141–9.
pubmed: 30184145 doi: 10.1093/bib/bby074
Vishnoi A, Kryazhimskiy S, Bazykin GA, Hannenhalli S, Plotkin JB. Young proteins experience more variable selection pressures than old proteins. Genome Res. 2010;20:1574–81.
pubmed: 20921233 pmcid: 2963820 doi: 10.1101/gr.109595.110
Albà MM, Castresana J. Inverse relationship between evolutionary rate and age of mammalian genes. Mol Biol Evol. 2005;22:598–606.
pubmed: 15537804 doi: 10.1093/molbev/msi045
Warnefors M, Eyre-Walker A. The accumulation of gene regulation through time. Genome Biol Evol. 2011;3:667–73.
pubmed: 21398425 pmcid: 3157833 doi: 10.1093/gbe/evr019
Zhao Y, Chen Y, Jin M, Wang J. The crosstalk between m6A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics. 2021;11:4549–66.
pubmed: 33754077 pmcid: 7977459 doi: 10.7150/thno.54967
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N 6 -methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.
pubmed: 29476152 pmcid: 5826585 doi: 10.1038/s41556-018-0045-z
Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, et al. Single-base mapping of m6A by an antibody-independent method. Sci Adv. 2019;5:250–3.
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.
pubmed: 23770567 pmcid: 3919509 doi: 10.1038/nature12213
Zhao M, Kim P, Mitra R, Zhao J, Zhao Z. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2016;44:D1023–31.
pubmed: 26590405 doi: 10.1093/nar/gkv1268
Lever J, Zhao EY, Grewal J, Jones MR, Jones SJM. CancerMine: a literature-mined resource for drivers, oncogenes and tumor suppressors in cancer. Nat Methods. 2019;16:505–7.
pubmed: 31110280 doi: 10.1038/s41592-019-0422-y
Dweep H, Sticht C, Pandey P, Gretz N. MiRWalk—database: prediction of possible miRNA binding sites by ‘ walking’ the genes of three genomes. J Biomed Inf. 2011;44:839–47.
doi: 10.1016/j.jbi.2011.05.002
von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, et al. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–7.
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013–2015. http://www.repeatmasker.org .
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.
pubmed: 22460905 pmcid: 3320027 doi: 10.1038/nature11003
Chen CL, Rappailles A, Duquenne L, Huvet M, Guilbaud G, Farinelli L, et al. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 2010;20:447–57.
pubmed: 20103589 pmcid: 2847748 doi: 10.1101/gr.098947.109
Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
pubmed: 19815776 pmcid: 2858594 doi: 10.1126/science.1181369
Brouwer-Visser J, Cheng WY, Bauer-Mehren A, Maisel D, Lechner K, Andersson E, et al. Regulatory T-cell genes drive altered immune microenvironment in adult solid cancers and allow for immune contextual patient subtyping. Cancer Epidemiol Biomark Prev. 2018;27:103–12.
doi: 10.1158/1055-9965.EPI-17-0461
Guo M, Tomoshige K, Meister M, Muley T, Fukazawa T, Tsuchiya T, et al. Gene signature driving invasive mucinous adenocarcinoma of the lung. EMBO Mol Med. 2017;9:462–81.
pubmed: 28255028 pmcid: 5376761 doi: 10.15252/emmm.201606711
Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46:225–33.
pubmed: 24487277 pmcid: 4636053 doi: 10.1038/ng.2891

Auteurs

Dan Huang (D)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China.

Xiansong Wang (X)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China.

Ziheng Huang (Z)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China.

Yingzhi Liu (Y)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China.

Xiaodong Liu (X)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China.

Tony Gin (T)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.

Sunny Hei Wong (SH)

CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China.
Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.

Jun Yu (J)

CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China.
Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.

Lin Zhang (L)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China.
Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.

Matthew Tak Vai Chan (MTV)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. mtvchan@cuhk.edu.hk.
CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China. mtvchan@cuhk.edu.hk.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. mtvchan@cuhk.edu.hk.

Huarong Chen (H)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. hchen2@cuhk.edu.hk.
CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China. hchen2@cuhk.edu.hk.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. hchen2@cuhk.edu.hk.
State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. hchen2@cuhk.edu.hk.

William Ka Kei Wu (WKK)

Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. wukakei@cuhk.edu.hk.
CUHK Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China. wukakei@cuhk.edu.hk.
Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. wukakei@cuhk.edu.hk.
State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. wukakei@cuhk.edu.hk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH