Domestication of Lima Bean (Phaseolus lunatus) Changes the Microbial Communities in the Rhizosphere.


Journal

Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663

Informations de publication

Date de publication:
May 2023
Historique:
received: 14 03 2022
accepted: 26 04 2022
medline: 10 5 2023
pubmed: 8 5 2022
entrez: 7 5 2022
Statut: ppublish

Résumé

Plants modulate the soil microbiota and select a specific microbial community in the rhizosphere. However, plant domestication reduces genetic diversity, changes plant physiology, and could have an impact on the associated microbiome assembly. Here, we used 16S rRNA gene sequencing to assess the microbial community in the bulk soil and rhizosphere of wild, semi-domesticated, and domesticated genotypes of lima bean (Phaseolus lunatus), to investigate the effect of plant domestication on microbial community assembly. In general, rhizosphere communities were more diverse than bulk soil, but no differences were found among genotypes. Our results showed that the microbial community's structure was different from wild and semi-domesticated as compared to domesticated genotypes. The community similarity decreased 57.67% from wild to domesticated genotypes. In general, the most abundant phyla were Actinobacteria (21.9%), Proteobacteria (20.7%), Acidobacteria (14%), and Firmicutes (9.7%). Comparing the different genotypes, the analysis showed that Firmicutes (Bacillus) was abundant in the rhizosphere of the wild genotypes, while Acidobacteria dominated semi-domesticated plants, and Proteobacteria (including rhizobia) was enriched in domesticated P. lunatus rhizosphere. The domestication process also affected the microbial community network, in which the complexity of connections decreased from wild to domesticated genotypes in the rhizosphere. Together, our work showed that the domestication of P. lunatus shaped rhizosphere microbial communities from taxonomic to a functional level, changing the abundance of specific microbial groups and decreasing the complexity of interactions among them.

Identifiants

pubmed: 35525854
doi: 10.1007/s00248-022-02028-2
pii: 10.1007/s00248-022-02028-2
doi:

Substances chimiques

RNA, Ribosomal, 16S 0
Soil 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1423-1433

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Abdelfattah A, Tack AJM, Wasserman B et al (2021) Evidence for host–microbiome co‐evolution in apple. New Phytol. https://doi.org/10.1111/NPH.17820
Abdullaeva Y, Manirajan BA, Honermeier B, Schnell S, Cardinale M (2021) Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J. Adv. Res. 31:75–86. https://doi.org/10.1016/j.jare.2020.12.008
doi: 10.1016/j.jare.2020.12.008 pubmed: 34194833
Abdullaeva Y, Ratering S, Manirajan BA, Rosado-Porto D, Schnell S, Cardinale M (2022) Domestication impacts the wheat-associated microbiota and the rhizosphere colonization by seed- and soil-originated microbiomes, across different fields. Front. Plant Sci. 12:806915. https://doi.org/10.3389/fpls.2021.806915
doi: 10.3389/fpls.2021.806915 pubmed: 35095978 pmcid: 8789879
Aguilar OM, Riva O, Peltzer E (2004) Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc. Natl. Acad. Sci. 101:13548–13553. https://doi.org/10.1073/pnas.0405321101
doi: 10.1073/pnas.0405321101 pubmed: 15340138 pmcid: 518792
Anderson MJ (2001) A new method for non parametric multivariate analysis of variance. Austral. Ecol. 26:32–46
Andueza-Noh RH, Martha L, Serrano-Serrano MI et al (2013) Multiple domestications of the Mesoamerican gene pool of lima bean (Phaseolus lunatus L.): evidence from chloroplast DNA sequences. Gen. Res. Crop. Evol. 60:1069–1086
doi: 10.1007/s10722-012-9904-9
Araujo FF, Bonifacio A, Bavaresco LG et al (2021) Bacillus subtilis changes the root architecture of soybean grown on nutrient-poor substrate. Rhizosphere 18:16–19. https://doi.org/10.1016/j.rhisph.2021.100348
doi: 10.1016/j.rhisph.2021.100348
Assunção IP, Nascimento LD, Ferreira MF et al (2011) Reaction of faba bean genotypes to Rhizoctonia solani and resistance stability. Hortic. Bras. 29:492–497. https://doi.org/10.1590/S0102-05362011000400008
doi: 10.1590/S0102-05362011000400008
Bastian M, Heymann S, Jacomy M (2009) Gephi: An open source software for exploring and manipulating networks. In Proceedings of the Third International ICWSM Conference. California, USA. 361– 362
Bellucci E, Bitocchi E, Ferrarini A et al (2014) Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. Plant Cell 26:1901–1912. https://doi.org/10.1105/TPC.114.124040
doi: 10.1105/TPC.114.124040 pubmed: 24850850 pmcid: 4079357
Bitocchi E, Rau D, Bellucci E, Rodriguez M et al (2017) Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front. Pl. Sci. 8:722. https://doi.org/10.3389/fpls.2017.00722
Brisson VL, Schmidt JE, Northen TR (2019) Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Sci Rep 9:15611. https://doi.org/10.1038/s41598-019-52148-y
doi: 10.1038/s41598-019-52148-y pubmed: 31666614 pmcid: 6821752
Bulgarelli D, Garrido-Oter R, Münch PC et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microb 17:392–403
doi: 10.1016/j.chom.2015.01.011
Chacón-Sánchez MI, Martínez-Castillo J (2017) Testing domestication scenarios of lima bean (Phaseolus lunatus L.) in Mesoamerica: insights from genome-wide genetic markers. Front. Plant Sci. 8:1551. https://doi.org/10.3389/fpls.2017.01551 .
Chouhan GK, Verma JP, Jaiswal DK et al (2021) Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions. Microbiol Res 248:126763
doi: 10.1016/j.micres.2021.126763 pubmed: 33892241
Costa CN, Antunes JEL, Lopes ACA, Freitas ADS, Araujo ASF (2020) Inoculation of rhizobia increases lima bean (Phaseolus lunatus) yield in soils from Piauí and Ceará states, Brazil. Rev Ceres 67:419–423
doi: 10.1590/0034-737x202067050010
Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321
doi: 10.1016/j.cell.2006.12.006 pubmed: 17190597
Ferguson SJ, Richardson DJ, Van Spanning RJM (2007) Biochemistry and molecular biology of nitrification. Biol. Nitrogen Cycle 209–222 https://doi.org/10.1016/B978-044452857-5.50015-1
Fernie AR, Yan J (2019) De Novo domestication: an alternative route toward new crops for the future. Mol. Plant 12:615–631
doi: 10.1016/j.molp.2019.03.016 pubmed: 30999078
Freytag GF, Debouck DG (2002) Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. Bot. Res. Ins. Texas.
Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8:e1002687
doi: 10.1371/journal.pcbi.1002687 pubmed: 23028285 pmcid: 3447976
Goss-Souza D, Mendes LW, Rodrigues JLM, Tsai SM (2019) Ecological processes shaping bulk soil and rhizosphere microbiome assembly in a long-term Amazon Forest-to-agriculture conversion. Microb. Ecol. 79:110–122
doi: 10.1007/s00248-019-01401-y pubmed: 31250077
Gray DA, Dugar G, Gamba P et al (2019) Extreme slow growth as alternative strategy to survive deep starvation in bacteria. Nat. Commun. 101:1–12. https://doi.org/10.1038/s41467-019-08719-8
doi: 10.1038/s41467-019-08719-8
Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci. 15:529–537. https://doi.org/10.1016/j.tplants.2010.05.008
doi: 10.1016/j.tplants.2010.05.008 pubmed: 20541451 pmcid: 2939243
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol. Electron. 4:1–9
Kalam S, Basu A, Ahmad I et al (2020) Recent understanding of soil Acidobacteria and their ecological significance: a critical review. Front. Microbiol. 11:580024. https://doi.org/10.3389/fmicb.2020.580024
doi: 10.3389/fmicb.2020.580024 pubmed: 33193209 pmcid: 7661733
Ladygina N, Hedlund K (2010) Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol. Biochem. 42:162–168. https://doi.org/10.1016/j.soilbio.2009.10.009
doi: 10.1016/j.soilbio.2009.10.009
López-Mondéjar R, Zühlke D, Becher D et al (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 6:1–12. https://doi.org/10.1038/srep25279
doi: 10.1038/srep25279
Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8:1577–1587
doi: 10.1038/ismej.2014.17 pubmed: 24553468 pmcid: 4817605
Mendes LW, Mendes R, Raaijmakers JM, Tsai SM (2018a) Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. https://doi.org/10.1038/s41396-018-0234-6
Mendes LW, Raaijmakers JM, Hollander M, Mendes R, Tsai SM (2018) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 12:212–224
doi: 10.1038/ismej.2017.158 pubmed: 29028000
Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100
doi: 10.1126/science.1203980 pubmed: 21551032
Mitter B, Pfaffenbichler N, Flavell R et al (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front. Microbiol. 8:1–10. https://doi.org/10.3389/fmicb.2017.00011
doi: 10.3389/fmicb.2017.00011
Moroenyane I, Mendes LW, Trembley J, Tripathi B, Yergeau É (2021) Plant compartments and developmental stages modulate the balance between niche-based and neutral processes in soybean microbiome. Microbial. Ecol. 82:416–428
doi: 10.1007/s00248-021-01688-w
Motta-Aldana JR, Serrano-Serrano ML, Hernández-Torres J et al (2010) Multiple Origins of Lima Bean Landraces in the Americas: Evidence from Chloroplast and Nuclear DNA Polymorphisms. Crop Sci. 50:1773
doi: 10.2135/cropsci2009.12.0706
Oliveiros JC (2007) VENNY. An interactive tool for comparing lists with Venn diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html .
Pérez-Jaramillo J, Carrión V, Bosse M et al (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11:2244–2257. https://doi.org/10.1038/ismej.2017.85
doi: 10.1038/ismej.2017.85 pubmed: 28585939 pmcid: 5607367
Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90:635–644. https://doi.org/10.1007/S11103-015-0337-7
doi: 10.1007/S11103-015-0337-7 pubmed: 26085172
Pérez-Jaramillo HM, Ramírez CA, Mendes R, Raaijmakers JM, Carrión VJ (2019) Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7:114
doi: 10.1186/s40168-019-0727-1 pubmed: 31412927 pmcid: 6694607
Pickersgill B (2007) Domestication of plants in the Americas: insights from mendelian and molecular genetics. Ann. Botany 100:925–940. https://doi.org/10.1093/aob/mcm193
doi: 10.1093/aob/mcm193
Praeg N, Illmer P (2020) Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms. Sci. Rep. 10:22324. https://doi.org/10.1038/s41598-020-79143-y
doi: 10.1038/s41598-020-79143-y pubmed: 33339837 pmcid: 7749151
Preece C, Livarda A, Christin PA et al (2017) How did the domestication of Fertile Crescent grain crops increase their yields? Funct. Ecol. 31:387–397. https://doi.org/10.1111/1365-2435.12760
doi: 10.1111/1365-2435.12760 pubmed: 28286354
Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848. https://doi.org/10.1038/nature07895
doi: 10.1038/nature07895 pubmed: 19212403
Rossmann M, Pérez-Jaramillo JE, Kavamura VN et al (2020) Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiol. Ecol. 96:fiaa032.
Sansinenea E (2019) Bacillus spp.: As plant growth-promoting bacteria. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. 225–237. https://doi.org/10.1007/978-981-13-5862-3_11
Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60
doi: 10.1186/gb-2011-12-6-r60 pubmed: 21702898 pmcid: 3218848
Singh J, Sun M, Cannon SB et al (2021) An accumulation of genetic variation and selection across the disease-related genes during apple domestication. Tree Genet. Genomes 17:1–11. https://doi.org/10.1007/S11295-021-01510-1/FIGURES/5
doi: 10.1007/S11295-021-01510-1/FIGURES/5
Soldan R, Fusi M, Cardinale M et al (2021) The effect of plant domestication on host control of the microbiota. Commun. Biol. 4:1–9. https://doi.org/10.1038/s42003-021-02467-6
doi: 10.1038/s42003-021-02467-6
Spor A, Roucou A, Mounier A (2020) Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat. Sci. Rep. 10:12234. https://doi.org/10.1038/s41598-020-69175-9
doi: 10.1038/s41598-020-69175-9 pubmed: 32699344 pmcid: 7376052
Van Elsas JD, Chiurazzi M, Mallon CA et al (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 109:1159–1164
doi: 10.1073/pnas.1109326109 pubmed: 22232669 pmcid: 3268289
Wei Z, Jousset A (2017) Plant breeding goes microbial. Trends Plant Sci. 22:555–558. https://doi.org/10.1016/j.tplants.2017.05.009
doi: 10.1016/j.tplants.2017.05.009 pubmed: 28592368
Wei Z, Yang T, Friman VP et al (2015) Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6:8413
doi: 10.1038/ncomms9413 pubmed: 26400552
Xiong W, Song Y, Yang K et al (2020) Rhizosphere protists are key determinants of plant health. Microbiome 8:1–9. https://doi.org/10.1186/s40168-020-00799-9
doi: 10.1186/s40168-020-00799-9
Yadav A, Borrelli JC, Elshahed MS, Youssef NH (2021) Genomic analysis of family UBA6911 (Group 18 Acidobacteria) expands the metabolic capacities of the phylum and highlights adaptations to terrestrial habitats. Appl. Environ. Microbiol. 87:1–19. https://doi.org/10.1128/AEM.00947-21
doi: 10.1128/AEM.00947-21

Auteurs

Josieli Lima da Silva (JL)

Plant Genetic Resource Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil.

Lucas William Mendes (LW)

Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil.

Sandra Mara Barbosa Rocha (SMB)

Soil Microbial Ecology Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil.

Jadson Emanuel Lopes Antunes (JEL)

Soil Microbial Ecology Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil.

Louise Melo de Souza Oliveira (LMS)

Soil Microbial Ecology Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil.

Vania Maria Maciel Melo (VMM)

Laboratório de Ecologia Microbiana E Biotecnologia, Federal University of Ceará, Fortaleza, CE, Brazil.

Francisca Andrea Silva Oliveira (FAS)

Laboratório de Ecologia Microbiana E Biotecnologia, Federal University of Ceará, Fortaleza, CE, Brazil.

Arthur Prudêncio de Araujo Pereira (APA)

Soil Science Department, Federal University of Ceará, Fortaleza, CE, Brazil.

Gérson do Nascimento Costa (GDN)

Plant Genetic Resource Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil.

Veronica Brito da Silva (VB)

Plant Genetic Resource Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil.

Regina Lucia Ferreira Gomes (RLF)

Plant Genetic Resource Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil.

Francisco de Alcantara Neto (F)

Plant Science Department, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil.

Angela Celis de Almeida Lopes (ACA)

Plant Genetic Resource Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil.

Ademir Sérgio Ferreira Araujo (ASF)

Soil Microbial Ecology Group, Agricultural Science Center, Federal University of Piauí, Teresina, PI, Brazil. asfaruaj@yahoo.com.br.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Lakes Salinity Archaea Bacteria Microbiota

Classifications MeSH