Evidence for the intermediate disturbance hypothesis and exponential decay in replacement in Streptococcus pneumoniae following use of conjugate vaccines.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
07 05 2022
07 05 2022
Historique:
received:
14
01
2022
accepted:
06
04
2022
entrez:
7
5
2022
pubmed:
8
5
2022
medline:
11
5
2022
Statut:
epublish
Résumé
Understanding how pneumococci respond to pneumococcal conjugate vaccines (PCVs) is crucial to predict the impact of upcoming higher-valency vaccines. However, stages in pneumococcal community succession following disturbance are poorly understood as long-time series on carriage are scarce and mostly evaluated at end-point measurements. We used a 20-year cross-sectional dataset of pneumococci carried by Portuguese children, and methods from community ecology, to study community assembly and diversity following use of PCV7 and PCV13. Two successional stages were detected upon introduction of each PCV: one in which non-vaccine serotypes increased in abundance, fitted by a broken-stick model, and a second in which the community returned to the original structure, fitted by a geometric series, but with different serotype profile and a drop in richness as great as 24%. A peak in diversity was observed for levels of intermediate vaccine uptake (30-40%) in agreement with the intermediate disturbance hypothesis. Serotype replacement was fitted by an exponential decay model (R
Identifiants
pubmed: 35525872
doi: 10.1038/s41598-022-11279-5
pii: 10.1038/s41598-022-11279-5
pmc: PMC9079081
doi:
Substances chimiques
Pneumococcal Vaccines
0
Vaccines, Conjugate
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7510Informations de copyright
© 2022. The Author(s).
Références
Epidemics. 2010 Jun;2(2):80-4
pubmed: 21031138
Trends Ecol Evol. 2013 Oct;28(10):571-2
pubmed: 23953996
BMC Infect Dis. 2013 Apr 18;13:180
pubmed: 23597389
Lancet Infect Dis. 2018 Apr;18(4):441-451
pubmed: 29395999
mBio. 2015 Sep 15;6(5):e00902-15
pubmed: 26374118
Euro Surveill. 2009 Mar 26;14(12):
pubmed: 19341605
Diagn Microbiol Infect Dis. 2011 Nov;71(3):208-16
pubmed: 21907526
Lancet Glob Health. 2018 Jul;6(7):e744-e757
pubmed: 29903376
Nat Rev Microbiol. 2018 Jun;16(6):355-367
pubmed: 29599457
PLoS One. 2011 Feb 28;6(2):e17035
pubmed: 21386965
BMC Infect Dis. 2020 Jan 10;20(1):29
pubmed: 31924177
Vaccine. 2016 Jul 25;34(34):4072-8
pubmed: 27325351
MMWR Recomm Rep. 2000 Oct 6;49(RR-9):1-35
pubmed: 11055835
Vaccine. 2000 Jun 15;18(25):2895-901
pubmed: 10812233
Proc Biol Sci. 2012 Jun 7;279(1736):2163-70
pubmed: 22298854
Lancet Infect Dis. 2004 Mar;4(3):144-54
pubmed: 14998500
PLoS One. 2012;7(5):e38271
pubmed: 22693610
Vaccine. 2021 Jul 22;39(32):4524-4533
pubmed: 34183206
J Pediatr. 2019 Oct;213:252-253.e3
pubmed: 31561776
J Clin Microbiol. 1993 Aug;31(8):2097-100
pubmed: 8370735
PLoS One. 2017 Apr 28;12(4):e0176723
pubmed: 28453533
Sci Rep. 2019 Jan 9;9(1):6
pubmed: 30626918
Lancet Infect Dis. 2021 Jan;21(1):137-147
pubmed: 32702302
Nat Rev Microbiol. 2017 May;15(5):259-270
pubmed: 28316330
BMC Infect Dis. 2015 Feb 18;15:68
pubmed: 25887323
mBio. 2012 Sep 25;3(5):
pubmed: 23015736
Science. 1978 Mar 24;199(4335):1302-10
pubmed: 17840770
Sci Rep. 2014 Aug 26;4:6185
pubmed: 25155166
J Immunol Res. 2015;2015:591580
pubmed: 26351648
Pediatr Infect Dis J. 2012 May;31(5):501-8
pubmed: 22327872
Microbiome. 2017 Jul 24;5(1):85
pubmed: 28738889
Mol Ecol Resour. 2019 Jul;19(4):804-817
pubmed: 30947383
Future Microbiol. 2016 Jun;11:737-44
pubmed: 27191588
J Clin Microbiol. 2008 Jan;46(1):225-34
pubmed: 18003797
Lancet Infect Dis. 2021 Jan;21(1):14-16
pubmed: 32702301
Acta Biotheor. 2003;51(1):35-41
pubmed: 12765251
Vaccine. 2015 Apr 21;33(17):2015-21
pubmed: 25776920
Pediatrics. 2009 Jul;124(1):e1-11
pubmed: 19564254
J Infect Dis. 2021 May 20;223(9):1590-1600
pubmed: 32877517
Vaccine. 2016 Mar 29;34(14):1648-56
pubmed: 26920470