MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior.

Electrophysiology adhesion molecules cell biology hippocampal cultures neuroscience rat single molecule tracking synapse development

Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
09 05 2022
Historique:
received: 03 11 2021
accepted: 11 04 2022
entrez: 9 5 2022
pubmed: 10 5 2022
medline: 11 5 2022
Statut: epublish

Résumé

MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.

Identifiants

pubmed: 35532105
doi: 10.7554/eLife.75233
pii: 75233
pmc: PMC9084894
doi:
pii:

Substances chimiques

Cell Adhesion Molecules, Neuronal 0
Nerve Tissue Proteins 0
Receptors, AMPA 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Déclaration de conflit d'intérêts

AT, ML, GB, BT, SD, AF, IC, KV, JV, MS, Jd, DC, OT No competing interests declared

Références

J Cell Biol. 2019 Aug 5;218(8):2677-2698
pubmed: 31262725
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Nat Neurosci. 2014 Jan;17(1):56-64
pubmed: 24336150
Cell Rep. 2017 Dec 26;21(13):3637-3645
pubmed: 29281813
J Cell Biol. 2013 Feb 4;200(3):321-36
pubmed: 23358245
J Neurosci. 2009 Mar 4;29(9):2926-37
pubmed: 19261888
Neuron. 2017 Jun 21;94(6):1132-1141.e4
pubmed: 28641112
Nat Rev Neurosci. 2008 Nov;9(11):813-25
pubmed: 18854855
Nat Commun. 2013;4:2252
pubmed: 23934334
Neuron. 2012 Oct 18;76(2):410-22
pubmed: 23083742
Nat Neurosci. 2012 Dec;15(12):1667-74
pubmed: 23143522
PLoS Genet. 2009 Jun;5(6):e1000536
pubmed: 19557195
Cell. 2016 Aug 25;166(5):1295-1307.e21
pubmed: 27565350
Neuron. 2017 Aug 16;95(4):896-913.e10
pubmed: 28817804
Nat Protoc. 2006;1(5):2406-15
pubmed: 17406484
Sci Rep. 2020 Nov 17;10(1):19954
pubmed: 33203884
Cell. 2017 Nov 2;171(4):745-769
pubmed: 29100073
Nat Biotechnol. 2016 Feb;34(2):199-203
pubmed: 26689543
Elife. 2018 Jul 25;7:
pubmed: 30044218
Science. 1997 Sep 5;277(5331):1511-5
pubmed: 9278515
Neuron. 2007 Dec 20;56(6):979-91
pubmed: 18093521
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2551-6
pubmed: 25675530
Cell Rep. 2013 Jun 27;3(6):1996-2007
pubmed: 23770246
Neurophotonics. 2016 Oct;3(4):041810
pubmed: 27872870
Proc Natl Acad Sci U S A. 2005 May 24;102(21):7583-8
pubmed: 15897449
Neuron. 2013 May 22;78(4):615-22
pubmed: 23719161
Trends Neurosci. 2015 Aug;38(8):496-505
pubmed: 26209464
Genome Biol. 2014;15(12):550
pubmed: 25516281
Nature. 2017 Nov 8;551(7679):192-197
pubmed: 29120426
Structure. 2021 Jul 1;29(7):664-678.e6
pubmed: 33535026
Eur J Neurosci. 2007 Oct;26(7):1738-48
pubmed: 17897391
J Biol Chem. 2005 Apr 29;280(17):17312-9
pubmed: 15723836
Nat Biotechnol. 2016 Feb;34(2):175-183
pubmed: 26689544
Neuron. 2009 Sep 10;63(5):628-42
pubmed: 19755106
Elife. 2020 Apr 23;9:
pubmed: 32324534
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Nat Neurosci. 2011 Jun;14(6):718-26
pubmed: 21532576
Eur J Cell Biol. 2004 Sep;83(9):449-56
pubmed: 15540461
J Neurosci Methods. 1991 Apr;37(2):173-82
pubmed: 1715499
Neuron. 2017 Jun 21;94(6):1121-1131.e6
pubmed: 28641111
Opt Express. 2012 Jan 30;20(3):2081-95
pubmed: 22330449
Dev Dyn. 2011 Jan;240(1):96-107
pubmed: 21104742
Nat Struct Mol Biol. 2008 Jan;15(1):50-6
pubmed: 18084303
Nat Protoc. 2017 Apr;12(4):748-763
pubmed: 28277548
Nat Commun. 2018 Sep 28;9(1):3979
pubmed: 30266896
Neuron. 2006 Feb 16;49(4):547-62
pubmed: 16476664
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):336-41
pubmed: 23248271
Nat Neurosci. 2014 Aug;17(8):1040-2
pubmed: 25017011
Nat Commun. 2019 Oct 4;10(1):4521
pubmed: 31586061
Nat Neurosci. 2018 May;21(5):671-682
pubmed: 29686261
Nat Commun. 2016 Mar 16;7:10773
pubmed: 26979420
Biochem J. 2012 Sep 1;446(2):321-30
pubmed: 22671294
Nat Commun. 2014 Oct 09;5:5066
pubmed: 25297980
Angew Chem Int Ed Engl. 2008;47(33):6172-6
pubmed: 18646237
Neuron. 2006 Sep 21;51(6):741-54
pubmed: 16982420
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3522-7
pubmed: 22331885
Neuron. 2010 Dec 9;68(5):843-56
pubmed: 21144999
PLoS One. 2013 Apr 30;8(4):e62918
pubmed: 23646160
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Neuron. 2016 Sep 7;91(5):1052-1068
pubmed: 27608760
Proteins. 2013 Sep;81(9):1621-33
pubmed: 23670729
J Neurosci. 2011 Sep 21;31(38):13500-15
pubmed: 21940442
Neuron. 2012 Oct 18;76(2):396-409
pubmed: 23083741
Neuron. 2007 Dec 20;56(6):992-1003
pubmed: 18093522
Cell Rep. 2021 Jun 15;35(11):109266
pubmed: 34133920
J Neurosci. 2013 Aug 7;33(32):13204-24
pubmed: 23926273
Curr Opin Neurobiol. 2019 Aug;57:71-80
pubmed: 30771697
J Neurosci. 2017 Jul 19;37(29):6816-6836
pubmed: 28607166
Nat Neurosci. 2003 Jul;6(7):708-16
pubmed: 12796785
Neuron. 2019 May 8;102(3):621-635.e3
pubmed: 30871858
Neuron. 2007 Mar 1;53(5):719-34
pubmed: 17329211
Nat Protoc. 2013 Nov;8(11):2281-2308
pubmed: 24157548
Nucleic Acids Res. 2019 Jul 2;47(W1):W171-W174
pubmed: 31106371
Exp Cell Res. 2005 Jul 1;307(1):91-9
pubmed: 15922729
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5727-5736
pubmed: 30808806
Science. 2005 Feb 25;307(5713):1324-8
pubmed: 15681343
Front Cell Neurosci. 2019 Dec 05;13:536
pubmed: 31866828
Neuron. 2017 Aug 16;95(4):729-732
pubmed: 28817794
Neuron. 2018 Oct 10;100(1):201-215.e9
pubmed: 30290982
Front Mol Neurosci. 2019 Nov 08;12:269
pubmed: 31780894
J Neurosci. 2015 Oct 07;35(40):13629-47
pubmed: 26446217

Auteurs

Andrea Toledo (A)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.

Mathieu Letellier (M)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.

Giorgia Bimbi (G)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.

Béatrice Tessier (B)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.

Sophie Daburon (S)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.

Alexandre Favereaux (A)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.

Ingrid Chamma (I)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.

Kristel Vennekens (K)

VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Jeroen Vanderlinden (J)

VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Matthieu Sainlos (M)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.

Joris de Wit (J)

VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Daniel Choquet (D)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.
University of Bordeaux, CNRS UAR 3420, INSERM, Bordeaux Imaging Center, Bordeaux, France.

Olivier Thoumine (O)

University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, Bordeaux, France.

Articles similaires

alpha-Synuclein Humans Animals Mice Lewy Body Disease
Animals Optogenetics Visual Cortex Neurons Mice
West Nile Fever Animals West Nile virus Humans Enteric Nervous System
1.00
Animals Mice Immunity, Innate Interneurons Synapses

Classifications MeSH