Intracellular mono-ADP-ribosyltransferases at the host-virus interphase.

ADP-ribosylation Alphavirus Chikungunya virus Coronavirus Hydrolase Interferon MARylation Macrodomain PARP Pattern recognition receptors Signaling

Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
10 May 2022
Historique:
received: 10 02 2022
accepted: 05 04 2022
revised: 15 03 2022
entrez: 10 5 2022
pubmed: 11 5 2022
medline: 14 5 2022
Statut: epublish

Résumé

The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus-host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.

Identifiants

pubmed: 35536484
doi: 10.1007/s00018-022-04290-6
pii: 10.1007/s00018-022-04290-6
pmc: PMC9087173
doi:

Substances chimiques

Pathogen-Associated Molecular Pattern Molecules 0
ADP Ribose Transferases EC 2.4.2.-

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

288

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : LU 466/16-2
Organisme : Deutsche Forschungsgemeinschaft
ID : VE 1093/1-1
Organisme : Wilhelm Sander-Stiftung
ID : 2020.034.1

Informations de copyright

© 2022. The Author(s).

Références

Chan YK, Gack MU (2016) Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol 14(6):360–373. https://doi.org/10.1038/nrmicro.2016.45
doi: 10.1038/nrmicro.2016.45 pubmed: 27174148 pmcid: 5072394
O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 13(6):453–460. https://doi.org/10.1038/nri3446
doi: 10.1038/nri3446 pubmed: 23681101
Chow KT, Gale M Jr, Loo YM (2018) RIG-I and other RNA sensors in antiviral immunity. Annu Rev Immunol 36:667–694. https://doi.org/10.1146/annurev-immunol-042617-053309
doi: 10.1146/annurev-immunol-042617-053309 pubmed: 29677479
Zevini A, Olagnier D, Hiscott J (2017) Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol 38(3):194–205. https://doi.org/10.1016/j.it.2016.12.004
doi: 10.1016/j.it.2016.12.004 pubmed: 28073693 pmcid: 5329138
Ablasser A, Hur S (2020) Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 21(1):17–29. https://doi.org/10.1038/s41590-019-0556-1
doi: 10.1038/s41590-019-0556-1 pubmed: 31819255
Motwani M, Pesiridis S, Fitzgerald KA (2019) DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 20(11):657–674. https://doi.org/10.1038/s41576-019-0151-1
doi: 10.1038/s41576-019-0151-1 pubmed: 31358977
Baldaccini M, Pfeffer S (2021) Untangling the roles of RNA helicases in antiviral innate immunity. PLoS Pathog 17(12):e1010072. https://doi.org/10.1371/journal.ppat.1010072
doi: 10.1371/journal.ppat.1010072 pubmed: 34882751 pmcid: 8659333
Boxx GM, Cheng G (2016) The roles of type I interferon in bacterial infection. Cell Host Microbe 19(6):760–769. https://doi.org/10.1016/j.chom.2016.05.016
doi: 10.1016/j.chom.2016.05.016 pubmed: 27281568 pmcid: 5847370
Liu G, Gack MU (2020) Distinct and orchestrated functions of RNA sensors in innate immunity. Immunity 53(1):26–42. https://doi.org/10.1016/j.immuni.2020.03.017
doi: 10.1016/j.immuni.2020.03.017 pubmed: 32668226 pmcid: 7367493
Iwasaki A (2012) A virological view of innate immune recognition. Annu Rev Microbiol 66:177–196. https://doi.org/10.1146/annurev-micro-092611-150203
doi: 10.1146/annurev-micro-092611-150203 pubmed: 22994491 pmcid: 3549330
Lazear HM, Schoggins JW, Diamond MS (2019) Shared and distinct functions of type I and type III interferons. Immunity 50(4):907–923. https://doi.org/10.1016/j.immuni.2019.03.025
doi: 10.1016/j.immuni.2019.03.025 pubmed: 30995506 pmcid: 6839410
Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545. https://doi.org/10.1146/annurev-immunol-032713-120231
doi: 10.1146/annurev-immunol-032713-120231 pubmed: 24555472 pmcid: 4313732
Luscher B, Butepage M, Eckei L, Krieg S, Verheugd P, Shilton BH (2018) ADP-ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease. Chem Rev 118(3):1092–1136. https://doi.org/10.1021/acs.chemrev.7b00122
doi: 10.1021/acs.chemrev.7b00122 pubmed: 29172462
Luscher B, Ahel I, Altmeyer M, Ashworth A, Bai P, Chang P et al (2021) ADP-ribosyltransferases, an update on function and nomenclature. FEBS J. https://doi.org/10.1111/febs.16142
doi: 10.1111/febs.16142 pubmed: 34323016
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M (2020) The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev 34(5–6):341–359. https://doi.org/10.1101/gad.334425.119
doi: 10.1101/gad.334425.119 pubmed: 32029454 pmcid: 7050484
Di Girolamo M, Fabrizio G (2019) Overview of the mammalian ADP-ribosyl-transferases clostridia toxin-like (ARTCs) family. Biochem Pharmacol 167:86–96. https://doi.org/10.1016/j.bcp.2019.07.004
doi: 10.1016/j.bcp.2019.07.004 pubmed: 31283932
Rosado MM, Pioli C (2021) ADP-ribosylation in evasion, promotion and exacerbation of immune responses. Immunology. https://doi.org/10.1111/imm.13332
doi: 10.1111/imm.13332 pubmed: 33783820
Gay NJ, Symmons MF, Gangloff M, Bryant CE (2014) Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14(8):546–558. https://doi.org/10.1038/nri3713
doi: 10.1038/nri3713 pubmed: 25060580
Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. https://doi.org/10.1038/ni.1863
doi: 10.1038/ni.1863 pubmed: 20404851
Song DH, Lee JO (2012) Sensing of microbial molecular patterns by Toll-like receptors. Immunol Rev 250(1):216–229. https://doi.org/10.1111/j.1600-065X.2012.01167.x
doi: 10.1111/j.1600-065X.2012.01167.x pubmed: 23046132
Streicher F, Jouvenet N (2019) Stimulation of innate immunity by host and viral RNAs. Trends Immunol 40(12):1134–1148. https://doi.org/10.1016/j.it.2019.10.009
doi: 10.1016/j.it.2019.10.009 pubmed: 31735513
Rehwinkel J, Gack MU (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20(9):537–551. https://doi.org/10.1038/s41577-020-0288-3
doi: 10.1038/s41577-020-0288-3 pubmed: 32203325
Heaton SM, Borg NA, Dixit VM (2016) Ubiquitin in the activation and attenuation of innate antiviral immunity. J Exp Med 213(1):1–13. https://doi.org/10.1084/jem.20151531
doi: 10.1084/jem.20151531 pubmed: 26712804 pmcid: 4710203
Hertzog J, Rehwinkel J (2020) Regulation and inhibition of the DNA sensor cGAS. EMBO Rep. https://doi.org/10.15252/embr.202051345
doi: 10.15252/embr.202051345 pubmed: 33155371 pmcid: 7726805
Zhang X, Bai XC, Chen ZJ (2020) Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity 53(1):43–53. https://doi.org/10.1016/j.immuni.2020.05.013
doi: 10.1016/j.immuni.2020.05.013 pubmed: 32668227
Cao X (2016) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16(1):35–50. https://doi.org/10.1038/nri.2015.8
doi: 10.1038/nri.2015.8 pubmed: 26711677
Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20(11):1242–1253. https://doi.org/10.1038/nm.3739
doi: 10.1038/nm.3739 pubmed: 25375928
Li SF, Gong MJ, Zhao FR, Shao JJ, Xie YL, Zhang YG et al (2018) Type I interferons: distinct biological activities and current applications for viral infection. Cell Physiol Biochem 51(5):2377–2396. https://doi.org/10.1159/000495897
doi: 10.1159/000495897 pubmed: 30537741
Jefferies CA (2019) Regulating IRFs in IFN driven disease. Front Immunol 10:325. https://doi.org/10.3389/fimmu.2019.00325
doi: 10.3389/fimmu.2019.00325 pubmed: 30984161 pmcid: 6449421
Ikushima H, Negishi H, Taniguchi T (2013) The IRF family transcription factors at the interface of innate and adaptive immune responses. Cold Spring Harb Symp Quant Biol 78:105–116. https://doi.org/10.1101/sqb.2013.78.020321
doi: 10.1101/sqb.2013.78.020321 pubmed: 24092468
Platanitis E, Decker T (2018) Regulatory networks involving STATs, IRFs, and NFkappaB in Inflammation. Front Immunol 9:2542. https://doi.org/10.3389/fimmu.2018.02542
doi: 10.3389/fimmu.2018.02542 pubmed: 30483250 pmcid: 6242948
Ivashkiv LB (2018) IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol 18(9):545–558. https://doi.org/10.1038/s41577-018-0029-z
doi: 10.1038/s41577-018-0029-z pubmed: 29921905 pmcid: 6340644
Lee AJ, Ashkar AA (2018) The dual nature of type I and type II interferons. Front Immunol 9:2061. https://doi.org/10.3389/fimmu.2018.02061
doi: 10.3389/fimmu.2018.02061 pubmed: 30254639 pmcid: 6141705
Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101. https://doi.org/10.1016/S0065-2776(07)96002-2
doi: 10.1016/S0065-2776(07)96002-2 pubmed: 17981204
Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147(927):258–267. https://doi.org/10.1098/rspb.1957.0048
doi: 10.1098/rspb.1957.0048 pubmed: 13465720
Isaacs A, Lindenmann J, Valentine RC (1957) Virus interference. II. Some properties of interferon. Proc R Soc Lond B Biol Sci 147(927):268–273. https://doi.org/10.1098/rspb.1957.0049
doi: 10.1098/rspb.1957.0049 pubmed: 13465721
Majoros A, Platanitis E, Kernbauer-Holzl E, Rosebrock F, Muller M, Decker T (2017) Canonical and non-canonical aspects of JAK-STAT signaling: lessons from interferons for cytokine responses. Front Immunol 8:29. https://doi.org/10.3389/fimmu.2017.00029
doi: 10.3389/fimmu.2017.00029 pubmed: 28184222 pmcid: 5266721
Au-Yeung N, Mandhana R, Horvath CM (2013) Transcriptional regulation by STAT1 and STAT2 in the interferon JAK-STAT pathway. JAKSTAT 2(3):e23931. https://doi.org/10.4161/jkst.23931
doi: 10.4161/jkst.23931 pubmed: 24069549 pmcid: 3772101
Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB, Dennis T et al (2017) Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol 15(12):e2004086. https://doi.org/10.1371/journal.pbio.2004086
doi: 10.1371/journal.pbio.2004086 pubmed: 29253856 pmcid: 5747502
Schoggins JW (2014) Interferon-stimulated genes: roles in viral pathogenesis. Curr Opin Virol 6:40–46. https://doi.org/10.1016/j.coviro.2014.03.006
doi: 10.1016/j.coviro.2014.03.006 pubmed: 24713352 pmcid: 4077717
Yang E, Li MMH (2020) All About the RNA: interferon-stimulated genes that interfere with viral RNA processes. Front Immunol 11:605024. https://doi.org/10.3389/fimmu.2020.605024
doi: 10.3389/fimmu.2020.605024 pubmed: 33362792 pmcid: 7756014
Yoshimura A, Ito M, Chikuma S, Akanuma T, Nakatsukasa H (2018) Negative regulation of cytokine signaling in immunity. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a028571
doi: 10.1101/cshperspect.a028571 pubmed: 28716890 pmcid: 6028070
Sancho-Shimizu V, Perez-de-Diego R, Jouanguy E, Zhang SY, Casanova JL (2011) Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol 1(6):487–496. https://doi.org/10.1016/j.coviro.2011.10.016
doi: 10.1016/j.coviro.2011.10.016 pubmed: 22347990 pmcid: 3280408
Casanova JL, Holland SM, Notarangelo LD (2012) Inborn errors of human JAKs and STATs. Immunity 36(4):515–528. https://doi.org/10.1016/j.immuni.2012.03.016
doi: 10.1016/j.immuni.2012.03.016 pubmed: 22520845 pmcid: 3334867
Ivashkiv LB, Donlin LT (2014) Regulation of type I interferon responses. Nat Rev Immunol 14(1):36–49. https://doi.org/10.1038/nri3581
doi: 10.1038/nri3581 pubmed: 24362405 pmcid: 4084561
Rack JGM, Palazzo L, Ahel I (2020) (ADP-ribosyl)hydrolases: structure, function, and biology. Genes Dev 34(5–6):263–284. https://doi.org/10.1101/gad.334631.119
doi: 10.1101/gad.334631.119 pubmed: 32029451 pmcid: 7050489
Palazzo L, Thomas B, Jemth AS, Colby T, Leidecker O, Feijs KL et al (2015) Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J 468(2):293–301. https://doi.org/10.1042/BJ20141554
doi: 10.1042/BJ20141554 pubmed: 25789582
Palazzo L, Daniels CM, Nettleship JE, Rahman N, McPherson RL, Ong SE et al (2016) ENPP1 processes protein ADP-ribosylation in vitro. FEBS J 283(18):3371–3388. https://doi.org/10.1111/febs.13811
doi: 10.1111/febs.13811 pubmed: 27406238 pmcid: 5030157
Weixler L, Scharinger K, Momoh J, Luscher B, Feijs KLH, Zaja R (2021) ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Nucleic Acids Res 49(7):3634–3650. https://doi.org/10.1093/nar/gkab136
doi: 10.1093/nar/gkab136 pubmed: 33693930 pmcid: 8053099
Groslambert J, Prokhorova E, Ahel I (2021) ADP-ribosylation of DNA and RNA. DNA Repair (Amst) 105:103144. https://doi.org/10.1016/j.dnarep.2021.103144
doi: 10.1016/j.dnarep.2021.103144 pmcid: 8385414
Takamura-Enya T, Watanabe M, Totsuka Y, Kanazawa T, Matsushima-Hibiya Y, Koyama K et al (2001) Mono(ADP-ribosyl)ation of 2’-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly. Proc Natl Acad Sci U S A 98(22):12414–12419. https://doi.org/10.1073/pnas.221444598
doi: 10.1073/pnas.221444598 pubmed: 11592983 pmcid: 60068
Nakano T, Matsushima-Hibiya Y, Yamamoto M, Enomoto S, Matsumoto Y, Totsuka Y et al (2006) Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. Proc Natl Acad Sci U S A 103(37):13652–13657. https://doi.org/10.1073/pnas.0606140103
doi: 10.1073/pnas.0606140103 pubmed: 16945908 pmcid: 1564245
Nakano T, Takahashi-Nakaguchi A, Yamamoto M, Watanabe M (2015) Pierisins and CARP-1: ADP-ribosylation of DNA by ARTCs in butterflies and shellfish. Curr Top Microbiol Immunol 384:127–149. https://doi.org/10.1007/82_2014_416
doi: 10.1007/82_2014_416 pubmed: 25033755
Jankevicius G, Ariza A, Ahel M, Ahel I (2016) The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol Cell 64(6):1109–1116. https://doi.org/10.1016/j.molcel.2016.11.014
doi: 10.1016/j.molcel.2016.11.014 pubmed: 27939941 pmcid: 5179494
Mikolcevic P, Hlousek-Kasun A, Ahel I, Mikoc A (2021) ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 19:2366–2383. https://doi.org/10.1016/j.csbj.2021.04.023
doi: 10.1016/j.csbj.2021.04.023 pubmed: 34025930 pmcid: 8120803
Juszczynski P, Kutok JL, Li C, Mitra J, Aguiar RC, Shipp MA (2006) BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B cell lymphomas with a prominent inflammatory infiltrate. Mol Cell Biol 26(14):5348–5359
doi: 10.1128/MCB.02351-05
Aguiar RC, Yakushijin Y, Kharbanda S, Salgia R, Fletcher JA, Shipp MA (2000) BAL is a novel risk-related gene in diffuse large B cell lymphomas that enhances cellular migration. Blood 96(13):4328–4334
doi: 10.1182/blood.V96.13.4328
Aguiar RC, Takeyama K, He C, Kreinbrink K, Shipp MA (2005) B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J Biol Chem 280(40):33756–33765
doi: 10.1074/jbc.M505408200
Zhang Y, Mao D, Roswit WT, Jin X, Patel AC, Patel DA et al (2015) PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nat Immunol 16(12):1215–1227. https://doi.org/10.1038/ni.3279
doi: 10.1038/ni.3279 pubmed: 26479788 pmcid: 4653074
Yang CS, Jividen K, Spencer A, Dworak N, Ni L, Oostdyk LT et al (2017) Ubiquitin modification by the E3 ligase/ADP-ribosyltransferase Dtx3L/Parp9. Mol Cell 66(4):503–16.e5. https://doi.org/10.1016/j.molcel.2017.04.028
doi: 10.1016/j.molcel.2017.04.028 pubmed: 28525742 pmcid: 5556935
Ryman KD, Meier KC, Nangle EM, Ragsdale SL, Korneeva NL, Rhoads RE et al (2005) Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J Virol 79(3):1487–1499. https://doi.org/10.1128/JVI.79.3.1487-1499.2005
doi: 10.1128/JVI.79.3.1487-1499.2005 pubmed: 15650175 pmcid: 544143
Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko SV, MacDonald MR et al (2006) Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131(6):1887–1898. https://doi.org/10.1053/j.gastro.2006.09.052
doi: 10.1053/j.gastro.2006.09.052 pubmed: 17087946
Salazar JC, Duhnam-Ems S, La Vake C, Cruz AR, Moore MW, Caimano MJ et al (2009) Activation of human monocytes by live Borrelia burgdorferi generates TLR2-dependent and -independent responses which include induction of IFN-beta. PLoS Pathog 5(5):e1000444. https://doi.org/10.1371/journal.ppat.1000444
doi: 10.1371/journal.ppat.1000444 pubmed: 19461888 pmcid: 2679197
Grunewald ME, Chen Y, Kuny C, Maejima T, Lease R, Ferraris D et al (2019) The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog 15(5):e1007756. https://doi.org/10.1371/journal.ppat.1007756
doi: 10.1371/journal.ppat.1007756 pubmed: 31095648 pmcid: 6521996
Mahmoud L, Al-Saif M, Amer HM, Sheikh M, Almajhdi FN, Khabar KS (2011) Green fluorescent protein reporter system with transcriptional sequence heterogeneity for monitoring the interferon response. J Virol 85(18):9268–9275. https://doi.org/10.1128/JVI.00772-11
doi: 10.1128/JVI.00772-11 pubmed: 21752918 pmcid: 3165742
Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G (2012) Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci U S A 109(11):4239–4244. https://doi.org/10.1073/pnas.1114981109
doi: 10.1073/pnas.1114981109 pubmed: 22371602 pmcid: 3306696
Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P et al (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472(7344):481–485. https://doi.org/10.1038/nature09907
doi: 10.1038/nature09907 pubmed: 21478870 pmcid: 3409588
Heer CD, Sanderson DJ, Voth LS, Alhammad YMO, Schmidt MS, Trammell SAJ et al (2020) Coronavirus infection and PARP expression dysregulate the NAD metabolome: an actionable component of innate immunity. J Biol Chem 295(52):17986–17996. https://doi.org/10.1074/jbc.RA120.015138
doi: 10.1074/jbc.RA120.015138 pubmed: 33051211
Karlberg T, Klepsch M, Thorsell AG, Andersson CD, Linusson A, Schuler H (2015) Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein. J Biol Chem 290(12):7336–7344. https://doi.org/10.1074/jbc.M114.630160
doi: 10.1074/jbc.M114.630160 pubmed: 25635049 pmcid: 4367243
Eckei L, Krieg S, Butepage M, Lehmann A, Gross A, Lippok B et al (2017) The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Sci Rep 7:41746. https://doi.org/10.1038/srep41746
doi: 10.1038/srep41746 pubmed: 28150709 pmcid: 5288732
Caprara G, Prosperini E, Piccolo V, Sigismondo G, Melacarne A, Cuomo A et al (2018) PARP14 controls the nuclear accumulation of a subset of type I IFN-inducible proteins. J Immunol 200(7):2439–2454. https://doi.org/10.4049/jimmunol.1701117
doi: 10.4049/jimmunol.1701117 pubmed: 29500242
Curina A, Termanini A, Barozzi I, Prosperini E, Simonatto M, Polletti S et al (2017) High constitutive activity of a broad panel of housekeeping and tissue-specific cis-regulatory elements depends on a subset of ETS proteins. Genes Dev 31(4):399–412. https://doi.org/10.1101/gad.293134.116
doi: 10.1101/gad.293134.116 pubmed: 28275002 pmcid: 5358759
Zhao Y, Song Z, Bai J, Liu X, Nauwynck H, Jiang P (2019) ZAP, a CCCH-type zinc finger protein, inhibits porcine reproductive and respiratory syndrome virus replication and interacts with viral Nsp9. J Virol. https://doi.org/10.1128/JVI.00001-19
doi: 10.1128/JVI.00001-19 pubmed: 31511389 pmcid: 6854514
Honda K, Takaoka A, Taniguchi T (2006) Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25(3):349–360. https://doi.org/10.1016/j.immuni.2006.08.009
doi: 10.1016/j.immuni.2006.08.009 pubmed: 16979567
Welsby I, Hutin D, Gueydan C, Kruys V, Rongvaux A, Leo O (2014) PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation. J Biol Chem 289(38):26642–26657. https://doi.org/10.1074/jbc.M114.589515
doi: 10.1074/jbc.M114.589515 pubmed: 25086041 pmcid: 4176246
Daniels CM, Kaplan PR, Bishof I, Bradfield C, Tucholski T, Nuccio AG et al (2020) Dynamic ADP-ribosylome, phosphoproteome, and interactome in LPS-activated macrophages. J Proteome Res 19(9):3716–3731. https://doi.org/10.1021/acs.jproteome.0c00261
doi: 10.1021/acs.jproteome.0c00261 pubmed: 32529831
McPherson RL, Ong SE, Leung AKL (2020) Ion-pairing with triethylammonium acetate improves solid-phase extraction of ADP-ribosylated peptides. J Proteome Res 19(2):984–990. https://doi.org/10.1021/acs.jproteome.9b00696
doi: 10.1021/acs.jproteome.9b00696 pubmed: 31859514 pmcid: 7326564
Hendriks IA, Larsen SC, Nielsen ML (2019) An advanced strategy for comprehensive profiling of ADP-ribosylation sites using mass spectrometry-based proteomics. Mol Cell Proteomics 18(5):1010–1026. https://doi.org/10.1074/mcp.TIR119.001315
doi: 10.1074/mcp.TIR119.001315 pubmed: 30798302 pmcid: 6495254
Kalesh K, Lukauskas S, Borg AJ, Snijders AP, Ayyappan V, Leung AKL et al (2019) An integrated chemical proteomics approach for quantitative profiling of intracellular ADP-ribosylation. Sci Rep 9(1):6655. https://doi.org/10.1038/s41598-019-43154-1
doi: 10.1038/s41598-019-43154-1 pubmed: 31040352 pmcid: 6491589
Larsen SC, Leutert M, Bilan V, Martello R, Jungmichel S, Young C et al (2017) Proteome-wide identification of in vivo ADP-ribose acceptor sites by liquid chromatography-tandem mass spectrometry. Methods Mol Biol 1608:149–162. https://doi.org/10.1007/978-1-4939-6993-7_11
doi: 10.1007/978-1-4939-6993-7_11 pubmed: 28695509
Nowak K, Rosenthal F, Karlberg T, Butepage M, Thorsell AG, Dreier B et al (2020) Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins. Nat Commun 11(1):5199. https://doi.org/10.1038/s41467-020-18981-w
doi: 10.1038/s41467-020-18981-w pubmed: 33060572 pmcid: 7566600
Buch-Larsen SC, Hendriks IA, Lodge JM, Rykaer M, Furtwangler B, Shishkova E et al (2020) Mapping physiological ADP-ribosylation using activated ion electron transfer dissociation. Cell Rep 32(12):108176. https://doi.org/10.1016/j.celrep.2020.108176
doi: 10.1016/j.celrep.2020.108176 pubmed: 32966781 pmcid: 7508052
Russo LC, Tomasin R, Matos IA, Manucci AC, Sowa ST, Dale K et al (2021) The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling. J Biol Chem 297(3):101041. https://doi.org/10.1016/j.jbc.2021.101041
doi: 10.1016/j.jbc.2021.101041 pubmed: 34358560 pmcid: 8332738
Daugherty MD, Malik HS (2012) Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet 46:677–700. https://doi.org/10.1146/annurev-genet-110711-155522
doi: 10.1146/annurev-genet-110711-155522 pubmed: 23145935
Kerns JA, Emerman M, Malik HS (2008) Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet 4(1):e21
doi: 10.1371/journal.pgen.0040021
Daugherty MD, Young JM, Kerns JA, Malik HS (2014) Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet 10(5):e1004403. https://doi.org/10.1371/journal.pgen.1004403
doi: 10.1371/journal.pgen.1004403 pubmed: 24875882 pmcid: 4038475
Gao G, Guo X, Goff SP (2002) Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297(5587):1703–1706
doi: 10.1126/science.1074276
Li MMH, Aguilar EG, Michailidis E, Pabon J, Park P, Wu X et al (2019) Characterization of novel splice variants of zinc finger antiviral protein (ZAP). J Virol. https://doi.org/10.1128/JVI.00715-19
doi: 10.1128/JVI.00715-19 pubmed: 31597776 pmcid: 6912123
Ficarelli M, Neil SJD, Swanson CM (2021) Targeted restriction of viral gene expression and replication by the ZAP antiviral system. Annu Rev Virol. https://doi.org/10.1146/annurev-virology-091919-104213
doi: 10.1146/annurev-virology-091919-104213 pubmed: 34129371
Schwerk J, Soveg FW, Ryan AP, Thomas KR, Hatfield LD, Ozarkar S et al (2019) RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nat Immunol 20(12):1610–1620. https://doi.org/10.1038/s41590-019-0527-6
doi: 10.1038/s41590-019-0527-6 pubmed: 31740798 pmcid: 7240801
Charron G, Li MM, MacDonald MR, Hang HC (2013) Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. Proc Natl Acad Sci U S A 110(27):11085–11090. https://doi.org/10.1073/pnas.1302564110
doi: 10.1073/pnas.1302564110 pubmed: 23776219 pmcid: 3703996
Zhang Y, Burke CW, Ryman KD, Klimstra WB (2007) Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J Virol 81(20):11246–11255
doi: 10.1128/JVI.01282-07
MacDonald MR, Machlin ES, Albin OR, Levy DE (2007) The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses. J Virol 81(24):13509–13518. https://doi.org/10.1128/JVI.00402-07
doi: 10.1128/JVI.00402-07 pubmed: 17928353 pmcid: 2168828
Muller S, Moller P, Bick MJ, Wurr S, Becker S, Gunther S et al (2007) Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 81(5):2391–2400. https://doi.org/10.1128/JVI.01601-06
doi: 10.1128/JVI.01601-06 pubmed: 17182693
Bick MJ, Carroll JW, Gao G, Goff SP, Rice CM, MacDonald MR (2003) Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J Virol 77(21):11555–11562. https://doi.org/10.1128/jvi.77.21.11555-11562.2003
doi: 10.1128/jvi.77.21.11555-11562.2003 pubmed: 14557641 pmcid: 229374
Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y et al (2011) Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci U S A 108(38):15834–15839. https://doi.org/10.1073/pnas.1101676108
doi: 10.1073/pnas.1101676108 pubmed: 21876179 pmcid: 3179061
Wang X, Tu F, Zhu Y, Gao G (2012) Zinc-finger antiviral protein inhibits XMRV infection. PLoS ONE 7(6):e39159. https://doi.org/10.1371/journal.pone.0039159
doi: 10.1371/journal.pone.0039159 pubmed: 22720057 pmcid: 3376128
Mao R, Nie H, Cai D, Zhang J, Liu H, Yan R et al (2013) Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 9(7):e1003494. https://doi.org/10.1371/journal.ppat.1003494
doi: 10.1371/journal.ppat.1003494 pubmed: 23853601 pmcid: 3708887
Chiu HP, Chiu H, Yang CF, Lee YL, Chiu FL, Kuo HC et al (2018) Inhibition of Japanese encephalitis virus infection by the host zinc-finger antiviral protein. PLoS Pathog 14(7):e1007166. https://doi.org/10.1371/journal.ppat.1007166
doi: 10.1371/journal.ppat.1007166 pubmed: 30016363 pmcid: 6049953
Liu CH, Zhou L, Chen G, Krug RM (2015) Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein. Proc Natl Acad Sci U S A 112(45):14048–14053. https://doi.org/10.1073/pnas.1509745112
doi: 10.1073/pnas.1509745112 pubmed: 26504237 pmcid: 4653199
Li M, Yan K, Wei L, Yang J, Lu C, Xiong F et al (2015) Zinc finger antiviral protein inhibits coxsackievirus B3 virus replication and protects against viral myocarditis. Antiviral Res 123:50–61. https://doi.org/10.1016/j.antiviral.2015.09.001
doi: 10.1016/j.antiviral.2015.09.001 pubmed: 26343012
Ficarelli M, Antzin-Anduetza I, Hugh-White R, Firth AE, Sertkaya H, Wilson H et al (2020) CpG dinucleotides inhibit HIV-1 replication through zinc finger antiviral protein (ZAP)-dependent and -independent mechanisms. J Virol. https://doi.org/10.1128/JVI.01337-19
doi: 10.1128/JVI.01337-19 pubmed: 31748389 pmcid: 7158733
Nchioua R, Kmiec D, Muller JA, Conzelmann C, Gross R, Swanson CM et al (2020) SARS-CoV-2 is restricted by zinc finger antiviral protein despite preadaptation to the low-CPG environment in humans. MBio. https://doi.org/10.1128/mBio.01930-20
doi: 10.1128/mBio.01930-20 pubmed: 33067384 pmcid: 7569149
Goonawardane N, Nguyen D, Simmonds P (2021) Association of zinc finger antiviral protein binding to viral genomic RNA with attenuation of replication of echovirus 7. mSphere. https://doi.org/10.1128/mSphere.01138-20
doi: 10.1128/mSphere.01138-20 pubmed: 33408233 pmcid: 7845596
Kozaki T, Komano J, Kanbayashi D, Takahama M, Misawa T, Satoh T et al (2017) Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proc Natl Acad Sci U S A 114(10):2681–2686. https://doi.org/10.1073/pnas.1621508114
doi: 10.1073/pnas.1621508114 pubmed: 28213497 pmcid: 5347618
Xing J, Zhang A, Du Y, Fang M, Minze LJ, Liu YJ et al (2021) Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells. Nat Commun 12(1):2681. https://doi.org/10.1038/s41467-021-23003-4
doi: 10.1038/s41467-021-23003-4 pubmed: 33976210 pmcid: 8113569
Krieg S, Pott F, Eckei L, Verheirstraeten M, Bütepage M, Lippok B et al (2020) Mono-ADP-ribosylation by ARTD10 restricts Chikungunya virus replication by interfering with the proteolytic activity of nsP2. bioRxiv. https://doi.org/10.1101/2020.01.07.896977
doi: 10.1101/2020.01.07.896977
Atasheva S, Akhrymuk M, Frolova EI, Frolov I (2012) New PARP gene with an anti-alphavirus function. J Virol 86(15):8147–8160. https://doi.org/10.1128/JVI.00733-12
doi: 10.1128/JVI.00733-12 pubmed: 22623789 pmcid: 3421642
Atasheva S, Frolova EI, Frolov I (2014) Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol 88(4):2116–2130. https://doi.org/10.1128/JVI.03443-13
doi: 10.1128/JVI.03443-13 pubmed: 24335297 pmcid: 3911523
Li L, Zhao H, Liu P, Li C, Quanquin N, Ji X et al (2018) PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins. Sci Signal. https://doi.org/10.1126/scisignal.aas9332
doi: 10.1126/scisignal.aas9332 pubmed: 30327410 pmcid: 6475502
Karki S, Li MM, Schoggins JW, Tian S, Rice CM, MacDonald MR (2012) Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PLoS ONE 7(5):e37398. https://doi.org/10.1371/journal.pone.0037398
doi: 10.1371/journal.pone.0037398 pubmed: 22615998 pmcid: 3353916
Guo X, Carroll JW, Macdonald MR, Goff SP, Gao G (2004) The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol 78(23):12781–12787
doi: 10.1128/JVI.78.23.12781-12787.2004
Takata MA, Goncalves-Carneiro D, Zang TM, Soll SJ, York A, Blanco-Melo D et al (2017) CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550(7674):124–127. https://doi.org/10.1038/nature24039
doi: 10.1038/nature24039 pubmed: 28953888 pmcid: 6592701
Kmiec D, Nchioua R, Sherrill-Mix S, Sturzel CM, Heusinger E, Braun E et al (2020) CpG frequency in the 5′ Third of the env gene determines sensitivity of primary HIV-1 strains to the zinc-finger antiviral protein. MBio. https://doi.org/10.1128/mBio.02903-19
doi: 10.1128/mBio.02903-19 pubmed: 33067384 pmcid: 7569149
Cheng X, Virk N, Chen W, Ji S, Ji S, Sun Y et al (2013) CpG usage in RNA viruses: data and hypotheses. PLoS ONE 8(9):e74109. https://doi.org/10.1371/journal.pone.0074109
doi: 10.1371/journal.pone.0074109 pubmed: 24086312 pmcid: 3781069
Greenbaum BD, Levine AJ, Bhanot G, Rabadan R (2008) Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog 4(6):e1000079. https://doi.org/10.1371/journal.ppat.1000079
doi: 10.1371/journal.ppat.1000079 pubmed: 18535658 pmcid: 2390760
Hartmann G (2017) Nucleic acid immunity. Adv Immunol 133:121–169. https://doi.org/10.1016/bs.ai.2016.11.001
doi: 10.1016/bs.ai.2016.11.001 pubmed: 28215278
Ficarelli M, Wilson H, Pedro Galao R, Mazzon M, Antzin-Anduetza I, Marsh M et al (2019) KHNYN is essential for the zinc finger antiviral protein (ZAP) to restrict HIV-1 containing clustered CpG dinucleotides. Elife. https://doi.org/10.7554/eLife.46767
doi: 10.7554/eLife.46767 pubmed: 31284899 pmcid: 6615859
Zheng X, Wang X, Tu F, Wang Q, Fan Z, Gao G (2017) TRIM25 is required for the antiviral activity of zinc finger antiviral protein. J Virol. https://doi.org/10.1128/JVI.00088-17
doi: 10.1128/JVI.00088-17 pubmed: 29046449 pmcid: 5730784
Kilchert C, Wittmann S, Vasiljeva L (2016) The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17(4):227–239. https://doi.org/10.1038/nrm.2015.15
doi: 10.1038/nrm.2015.15 pubmed: 26726035
Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci U S A 104(1):151–156
doi: 10.1073/pnas.0607063104
Chen G, Guo X, Lv F, Xu Y, Gao G (2008) p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein. Proc Natl Acad Sci U S A 105(11):4352–4357. https://doi.org/10.1073/pnas.0712276105
doi: 10.1073/pnas.0712276105 pubmed: 18334637 pmcid: 2393818
Li MM, MacDonald MR, Rice CM (2015) To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends Cell Biol 25(6):320–329. https://doi.org/10.1016/j.tcb.2015.02.001
doi: 10.1016/j.tcb.2015.02.001 pubmed: 25748385 pmcid: 4441850
Todorova T, Bock FJ, Chang P (2014) PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript. Nat Commun 5:5362. https://doi.org/10.1038/ncomms6362
doi: 10.1038/ncomms6362 pubmed: 25382312
Zhu Y, Wang X, Goff SP, Gao G (2012) Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J 31(21):4236–4246. https://doi.org/10.1038/emboj.2012.271
doi: 10.1038/emboj.2012.271 pubmed: 23023399 pmcid: 3492732
Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963. https://doi.org/10.1146/annurev.biochem.68.1.913
doi: 10.1146/annurev.biochem.68.1.913 pubmed: 10872469
Montero H, Perez-Gil G, Sampieri CL (2019) Eukaryotic initiation factor 4A (eIF4A) during viral infections. Virus Genes 55(3):267–273. https://doi.org/10.1007/s11262-019-01641-7
doi: 10.1007/s11262-019-01641-7 pubmed: 30796742 pmcid: 7088766
Li MM, Lau Z, Cheung P, Aguilar EG, Schneider WM, Bozzacco L et al (2017) TRIM25 enhances the antiviral action of zinc-finger antiviral protein (ZAP). PLoS Pathog 13(1):e1006145. https://doi.org/10.1371/journal.ppat.1006145
doi: 10.1371/journal.ppat.1006145 pubmed: 28060952 pmcid: 5245905
Aliyari R, Ding SW (2009) RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev 227(1):176–188. https://doi.org/10.1111/j.1600-065X.2008.00722.x
doi: 10.1111/j.1600-065X.2008.00722.x pubmed: 19120484 pmcid: 2676720
Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P (2011) Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42(4):489–499. https://doi.org/10.1016/j.molcel.2011.04.015
doi: 10.1016/j.molcel.2011.04.015 pubmed: 21596313 pmcid: 3898460
Seo GJ, Kincaid RP, Phanaksri T, Burke JM, Pare JM, Cox JE et al (2013) Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 14(4):435–445. https://doi.org/10.1016/j.chom.2013.09.002
doi: 10.1016/j.chom.2013.09.002 pubmed: 24075860
Kedersha N, Ivanov P, Anderson P (2013) Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 38(10):494–506. https://doi.org/10.1016/j.tibs.2013.07.004
doi: 10.1016/j.tibs.2013.07.004 pubmed: 24029419
White JP, Lloyd RE (2012) Regulation of stress granules in virus systems. Trends Microbiol 20(4):175–183. https://doi.org/10.1016/j.tim.2012.02.001
doi: 10.1016/j.tim.2012.02.001 pubmed: 22405519 pmcid: 3322245
Zhang Q, Sharma NR, Zheng ZM, Chen M (2019) Viral regulation of RNA granules in infected cells. Virol Sin 34(2):175–191. https://doi.org/10.1007/s12250-019-00122-3
doi: 10.1007/s12250-019-00122-3 pubmed: 31037644 pmcid: 6513825
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A (2020) Dance with the devil: stress granules and signaling in antiviral responses. Viruses. https://doi.org/10.3390/v12090984
doi: 10.3390/v12090984 pubmed: 32899736 pmcid: 7552005
Grimaldi G, Catara G, Palazzo L, Corteggio A, Valente C, Corda D (2019) PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochem Pharmacol 167:64–75. https://doi.org/10.1016/j.bcp.2019.05.019
doi: 10.1016/j.bcp.2019.05.019 pubmed: 31102582
Catara G, Grimaldi G, Schembri L, Spano D, Turacchio G, Lo Monte M et al (2017) PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions. Sci Rep 7(1):14035. https://doi.org/10.1038/s41598-017-14156-8
doi: 10.1038/s41598-017-14156-8 pubmed: 29070863 pmcid: 5656619
Law LMJ, Razooky BS, Li MMH, You S, Jurado A, Rice CM et al (2019) ZAP’s stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathog 15(5):e1007798. https://doi.org/10.1371/journal.ppat.1007798
doi: 10.1371/journal.ppat.1007798 pubmed: 31116799 pmcid: 6548403
Feijs KL, Kleine H, Braczynski A, Forst AH, Herzog N, Verheugd P et al (2013) ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono-ADP-ribosylation. Cell Commun Signal 11(1):5. https://doi.org/10.1186/1478-811X-11-5
doi: 10.1186/1478-811X-11-5 pubmed: 23332125 pmcid: 3627616
Verheugd P, Forst AH, Milke L, Herzog N, Feijs KL, Kremmer E et al (2013) Regulation of NF-kappaB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun 4:1683. https://doi.org/10.1038/ncomms2672
doi: 10.1038/ncomms2672 pubmed: 23575687
Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R et al (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20(4):502–507. https://doi.org/10.1038/nsmb.2521
doi: 10.1038/nsmb.2521 pubmed: 23474714
Tian Y, Korn P, Tripathi P, Komnig D, Wiemuth D, Nikouee A et al (2020) The mono-ADP-ribosyltransferase ARTD10 regulates the voltage-gated K(+) channel Kv1.1 through protein kinase C delta. BMC Biol 18(1):143. https://doi.org/10.1186/s12915-020-00878-1
doi: 10.1186/s12915-020-00878-1 pubmed: 33059680 pmcid: 7558731
Carter-O’Connell I, Jin H, Morgan RK, Zaja R, David LL, Ahel I et al (2016) Identifying family-member-specific targets of mono-ARTDs by using a chemical genetics approach. Cell Rep 14(3):621–631. https://doi.org/10.1016/j.celrep.2015.12.045
doi: 10.1016/j.celrep.2015.12.045 pubmed: 26774478 pmcid: 5423403
Carter-O’Connell I, Vermehren-Schmaedick A, Jin H, Morgan RK, David LL, Cohen MS (2018) Combining chemical genetics with proximity-dependent labeling reveals cellular targets of poly(ADP-ribose) polymerase 14 (PARP14). ACS Chem Biol 13(10):2841–2848. https://doi.org/10.1021/acschembio.8b00567
doi: 10.1021/acschembio.8b00567 pubmed: 30247868
Higashi H, Maejima T, Lee LH, Yamazaki Y, Hottiger MO, Singh SA et al (2019) A study into the ADP-ribosylome of IFN-gamma-stimulated THP-1 human macrophage-like cells identifies ARTD8/PARP14 and ARTD9/PARP9 ADP-ribosylation. J Proteome Res 18(4):1607–1622. https://doi.org/10.1021/acs.jproteome.8b00895
doi: 10.1021/acs.jproteome.8b00895 pubmed: 30848916 pmcid: 6456868
Forst AH, Karlberg T, Herzog N, Thorsell AG, Gross A, Feijs KL et al (2013) Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21(3):462–475. https://doi.org/10.1016/j.str.2012.12.019
doi: 10.1016/j.str.2012.12.019 pubmed: 23473667
Goenka S, Boothby M (2006) Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. Proc Natl Acad Sci U S A 103(11):4210–4215
doi: 10.1073/pnas.0506981103
Goenka S, Cho SH, Boothby M (2007) Collaborator of Stat6 (CoaSt6)-associated Poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription. J Biol Chem 282(26):18732–18739
doi: 10.1074/jbc.M611283200
Iwata H, Goettsch C, Sharma A, Ricchiuto P, Goh WW, Halu A et al (2016) PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nat Commun 7:12849. https://doi.org/10.1038/ncomms12849
doi: 10.1038/ncomms12849 pubmed: 27796300 pmcid: 5095532
Begitt A, Cavey J, Droescher M, Vinkemeier U (2018) On the role of STAT1 and STAT6 ADP-ribosylation in the regulation of macrophage activation. Nat Commun 9(1):2144. https://doi.org/10.1038/s41467-018-04522-z
doi: 10.1038/s41467-018-04522-z pubmed: 29858569 pmcid: 5984628
Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell AG et al (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30(3):283–288. https://doi.org/10.1038/nbt.2121
doi: 10.1038/nbt.2121 pubmed: 22343925
Verma DK, Gupta S, Biswas J, Joshi N, Singh A, Gupta P et al (2018) New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis. Biochim Biophys Acta Mol Basis Dis 1864(6 Pt A):2078–2096. https://doi.org/10.1016/j.bbadis.2018.03.014
doi: 10.1016/j.bbadis.2018.03.014 pubmed: 29551729
Vandewalle A, Tourneur E, Bens M, Chassin C, Werts C (2014) Calcineurin/NFAT signaling and innate host defence: a role for NOD1-mediated phagocytic functions. Cell Commun Signal 12:8. https://doi.org/10.1186/1478-811X-12-8
doi: 10.1186/1478-811X-12-8 pubmed: 24479879 pmcid: 3910266
Palavalli Parsons LH, Challa S, Gibson BA, Nandu T, Stokes MS, Huang D et al (2021) Identification of PARP-7 substrates reveals a role for MARylation in microtubule control in ovarian cancer cells. Elife. https://doi.org/10.7554/eLife.60481
doi: 10.7554/eLife.60481 pubmed: 33475085 pmcid: 7884071
Chatrin C, Gabrielsen M, Buetow L, Nakasone MA, Ahmed SF, Sumpton D et al (2020) Structural insights into ADP-ribosylation of ubiquitin by Deltex family E3 ubiquitin ligases. Sci Adv. https://doi.org/10.1126/sciadv.abc0418
doi: 10.1126/sciadv.abc0418 pubmed: 32948590 pmcid: 7500938
Zheng Y, Gao C (2020) Fine-tuning of antiviral innate immunity by ubiquitination. Adv Immunol 145:95–128. https://doi.org/10.1016/bs.ai.2019.11.004
doi: 10.1016/bs.ai.2019.11.004 pubmed: 32081201
Alam U, Kennedy D (2019) Rasputin a decade on and more promiscuous than ever? A review of G3BPs. Biochim Biophys Acta Mol Cell Res 1866(3):360–370. https://doi.org/10.1016/j.bbamcr.2018.09.001
doi: 10.1016/j.bbamcr.2018.09.001 pubmed: 30595162
Jayabalan AK, Adivarahan S, Koppula A, Abraham R, Batish M, Zenklusen D et al (2021) Stress granule formation, disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2021719118
doi: 10.1073/pnas.2021719118 pubmed: 33547245 pmcid: 8017970
Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M (2013) Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells 18(2):135–146. https://doi.org/10.1111/gtc.12023
doi: 10.1111/gtc.12023 pubmed: 23279204
Li J, Boix E (2021) Host defence RNases as antiviral agents against enveloped single stranded RNA viruses. Virulence 12(1):444–469. https://doi.org/10.1080/21505594.2021.1871823
doi: 10.1080/21505594.2021.1871823 pubmed: 33660566 pmcid: 7939569
Kim DY, Reynaud JM, Rasalouskaya A, Akhrymuk I, Mobley JA, Frolov I et al (2016) New world and old world alphaviruses have evolved to exploit different components of stress granules, FXR and G3BP proteins, for Assembly of Viral Replication Complexes. PLoS Pathog 12(8):e1005810. https://doi.org/10.1371/journal.ppat.1005810
doi: 10.1371/journal.ppat.1005810 pubmed: 27509095 pmcid: 4980055
Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U et al (2020) G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181(2):325–45.e28. https://doi.org/10.1016/j.cell.2020.03.046
doi: 10.1016/j.cell.2020.03.046 pubmed: 32302571 pmcid: 7448383
Guillen-Boixet J, Kopach A, Holehouse AS, Wittmann S, Jahnel M, Schlussler R et al (2020) RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181(2):346–61.e17. https://doi.org/10.1016/j.cell.2020.03.049
doi: 10.1016/j.cell.2020.03.049 pubmed: 32302572 pmcid: 7181197
Sanders DW, Kedersha N, Lee DSW, Strom AR, Drake V, Riback JA et al (2020) Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181(2):306–24.e28. https://doi.org/10.1016/j.cell.2020.03.050
doi: 10.1016/j.cell.2020.03.050 pubmed: 32302570 pmcid: 7816278
McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A (2015) Type I interferons in infectious disease. Nat Rev Immunol 15(2):87–103. https://doi.org/10.1038/nri3787
doi: 10.1038/nri3787 pubmed: 25614319 pmcid: 7162685
Lee JS, Shin EC (2020) The type I interferon response in COVID-19: implications for treatment. Nat Rev Immunol 20(10):585–586. https://doi.org/10.1038/s41577-020-00429-3
doi: 10.1038/s41577-020-00429-3 pubmed: 32788708 pmcid: 8824445
Meyts I, Casanova JL (2021) Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. Eur J Immunol 51(5):1039–1061. https://doi.org/10.1002/eji.202048793
doi: 10.1002/eji.202048793 pubmed: 33729549 pmcid: 8900014
Hernandez N, Bucciol G, Moens L, Le Pen J, Shahrooei M, Goudouris E et al (2019) Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med 216(9):2057–2070. https://doi.org/10.1084/jem.20182295
doi: 10.1084/jem.20182295 pubmed: 31270247 pmcid: 6719432
Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J et al (2020) Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. https://doi.org/10.1126/science.abd4570
doi: 10.1126/science.abd4570 pubmed: 33335060 pmcid: 7880903
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N et al (2020) Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369(6504):718–724. https://doi.org/10.1126/science.abc6027
doi: 10.1126/science.abc6027 pubmed: 32661059 pmcid: 7402632
Acharya D, Liu G, Gack MU (2020) Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol 20(7):397–398. https://doi.org/10.1038/s41577-020-0346-x
doi: 10.1038/s41577-020-0346-x pubmed: 32457522 pmcid: 7249038
Hayakawa S, Shiratori S, Yamato H, Kameyama T, Kitatsuji C, Kashigi F et al (2011) ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat Immunol 12(1):37–44. https://doi.org/10.1038/ni.1963
doi: 10.1038/ni.1963 pubmed: 21102435
Guo T, Zuo Y, Qian L, Liu J, Yuan Y, Xu K et al (2019) ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase beta-TrCP. Nat Microbiol 4(11):1872–1884. https://doi.org/10.1038/s41564-019-0428-3
doi: 10.1038/s41564-019-0428-3 pubmed: 30988430
Rothhammer V, Quintana FJ (2019) The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 19(3):184–197. https://doi.org/10.1038/s41577-019-0125-8
doi: 10.1038/s41577-019-0125-8 pubmed: 30718831
Gandhi R, Kumar D, Burns EJ, Nadeau M, Dake B, Laroni A et al (2010) Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat Immunol 11(9):846–853. https://doi.org/10.1038/ni.1915
doi: 10.1038/ni.1915 pubmed: 20676092 pmcid: 2929008
Veldhoen M, Hirota K, Christensen J, O’Garra A, Stockinger B (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206(1):43–49. https://doi.org/10.1084/jem.20081438
doi: 10.1084/jem.20081438 pubmed: 19114668 pmcid: 2626686
Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, Nohara K et al (2009) Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med 206(9):2027–2035. https://doi.org/10.1084/jem.20090560
doi: 10.1084/jem.20090560 pubmed: 19703987 pmcid: 2737163
Bock KW (2020) Aryl hydrocarbon receptor (AHR) functions: balancing opposing processes including inflammatory reactions. Biochem Pharmacol 178:114093. https://doi.org/10.1016/j.bcp.2020.114093
doi: 10.1016/j.bcp.2020.114093 pubmed: 32535108
Ma Q, Baldwin KT, Renzelli AJ, McDaniel A, Dong L (2001) TCDD-inducible poly(ADP-ribose) polymerase: a novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Biophys Res Commun 289(2):499–506
doi: 10.1006/bbrc.2001.5987
Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478(7368):197–203. https://doi.org/10.1038/nature10491
doi: 10.1038/nature10491 pubmed: 21976023
Gomez A, Bindesboll C, Satheesh SV, Grimaldi G, Hutin D, MacPherson L et al (2018) Characterization of TCDD-inducible poly-ADP-ribose polymerase (TIPARP/ARTD14) catalytic activity. Biochem J 475(23):3827–3846. https://doi.org/10.1042/BCJ20180347
doi: 10.1042/BCJ20180347 pubmed: 30373764
MacPherson L, Tamblyn L, Rajendra S, Bralha F, McPherson JP, Matthews J (2013) 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res 41(3):1604–1621. https://doi.org/10.1093/nar/gks1337
doi: 10.1093/nar/gks1337 pubmed: 23275542
Diani-Moore S, Ram P, Li X, Mondal P, Youn DY, Sauve AA et al (2010) Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic gluconeogenesis by 2,3,7,8-tetrachlorodibenzo-p-dioxin and of nicotinamide as a corrective agent for this effect. J Biol Chem 285(50):38801–38810. https://doi.org/10.1074/jbc.M110.131573
doi: 10.1074/jbc.M110.131573 pubmed: 20876576 pmcid: 2998137
Yamada T, Horimoto H, Kameyama T, Hayakawa S, Yamato H, Dazai M et al (2016) Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat Immunol 17(6):687–694. https://doi.org/10.1038/ni.3422
doi: 10.1038/ni.3422 pubmed: 27089381
Yang CS, Jividen K, Kamata T, Dworak N, Oostdyk L, Remlein B et al (2021) Androgen signaling uses a writer and a reader of ADP-ribosylation to regulate protein complex assembly. Nat Commun 12(1):2705. https://doi.org/10.1038/s41467-021-23055-6
doi: 10.1038/s41467-021-23055-6 pubmed: 33976187 pmcid: 8113490
Grunewald ME, Shaban MG, Mackin SR, Fehr AR, Perlman S (2020) Murine coronavirus infection activates the aryl hydrocarbon receptor in an indoleamine 2,3-dioxygenase-independent manner, contributing to cytokine modulation and proviral TCDD-inducible-PARP Expression. J Virol. https://doi.org/10.1128/JVI.01743-19
doi: 10.1128/JVI.01743-19 pubmed: 31694960 pmcid: 7000979
Rodriguez KM, Buch-Larsen SC, Kirby IT, Siordia IR, Hutin D, Rasmussen M et al (2021) Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets. Elife. https://doi.org/10.7554/eLife.60480
doi: 10.7554/eLife.60480 pubmed: 34114561 pmcid: 8241443
Voorneveld J, Rack JGM, van Gijlswijk L, Meeuwenoord NJ, Liu Q, Overkleeft HS et al (2021) Molecular tools for the study of ADP-ribosylation: a unified and versatile method to synthesise native mono-ADP-ribosylated peptides. Chemistry 27(41):10621–10627. https://doi.org/10.1002/chem.202100337
doi: 10.1002/chem.202100337 pubmed: 33769608 pmcid: 8360141
Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I et al (2009) Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325(5945):1240–1243. https://doi.org/10.1126/science.1177321
doi: 10.1126/science.1177321 pubmed: 19661379 pmcid: 3443743
Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929. https://doi.org/10.1038/nsmb.1664
doi: 10.1038/nsmb.1664 pubmed: 19680243
Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK et al (2009) Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci U S A 106(33):13770–13774. https://doi.org/10.1073/pnas.0906920106
doi: 10.1073/pnas.0906920106 pubmed: 19666485 pmcid: 2722505
Ten G-S (2017) strategies of interferon evasion by viruses. Cell Host Microbe 22(2):176–184. https://doi.org/10.1016/j.chom.2017.07.012
doi: 10.1016/j.chom.2017.07.012
Lowery SA, Sariol A, Perlman S (2021) Innate immune and inflammatory responses to SARS-CoV-2: implications for COVID-19. Cell Host Microbe 29(7):1052–1062. https://doi.org/10.1016/j.chom.2021.05.004
doi: 10.1016/j.chom.2021.05.004 pubmed: 34022154 pmcid: 8126603
Till S, Ladurner AG (2009) Sensing NAD metabolites through macro domains. Front Biosci (Landmark Ed) 14:3246–3258
doi: 10.2741/3448
Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F et al (2005) The macro domain is an ADP-ribose binding module. EMBO J 24(11):1911–1920
doi: 10.1038/sj.emboj.7600664
Rack JG, Perina D, Ahel I (2016) Macrodomains: structure, function, evolution, and catalytic activities. Annu Rev Biochem 85:431–454. https://doi.org/10.1146/annurev-biochem-060815-014935
doi: 10.1146/annurev-biochem-060815-014935 pubmed: 26844395
Feijs KL, Forst AH, Verheugd P, Luscher B (2013) Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 14(7):443–451. https://doi.org/10.1038/nrm3601
doi: 10.1038/nrm3601 pubmed: 23736681 pmcid: 7097401
Lin MH, Chang SC, Chiu YC, Jiang BC, Wu TH, Hsu CH (2020) Structural, biophysical, and biochemical elucidation of the SARS-CoV-2 nonstructural protein 3 macro domain. ACS Infect Dis 6(11):2970–2978. https://doi.org/10.1021/acsinfecdis.0c00441
doi: 10.1021/acsinfecdis.0c00441 pubmed: 32946224
McPherson RL, Abraham R, Sreekumar E, Ong SE, Cheng SJ, Baxter VK et al (2017) ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1621485114
doi: 10.1073/pnas.1621485114 pubmed: 29247053 pmcid: 5776790
Li C, Debing Y, Jankevicius G, Neyts J, Ahel I, Coutard B et al (2016) Viral macro domains reverse protein ADP-ribosylation. J Virol 90(19):8478–8486. https://doi.org/10.1128/JVI.00705-16
doi: 10.1128/JVI.00705-16 pubmed: 27440879 pmcid: 5021415
Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J, Athmer J et al (2016) The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. MBio. https://doi.org/10.1128/mBio.01721-16
doi: 10.1128/mBio.01721-16 pubmed: 27965448 pmcid: 5156301
Alhammad YMO, Kashipathy MM, Roy A, Gagne JP, McDonald P, Gao P et al (2021) The SARS-CoV-2 conserved macrodomain is a mono-ADP-ribosylhydrolase. J Virol. https://doi.org/10.1128/JVI.01969-20
doi: 10.1128/JVI.01969-20 pubmed: 33158944 pmcid: 7925111
Rack JGM, Zorzini V, Zhu Z, Schuller M, Ahel D, Ahel I (2020) Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential. Open Biol 10(11):200237. https://doi.org/10.1098/rsob.200237
doi: 10.1098/rsob.200237 pubmed: 33202171 pmcid: 7729036
Fehr AR, Athmer J, Channappanavar R, Phillips JM, Meyerholz DK, Perlman S (2015) The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis. J Virol 89(3):1523–1536. https://doi.org/10.1128/JVI.02596-14
doi: 10.1128/JVI.02596-14 pubmed: 25428866
Park E, Griffin DE (2009) The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology 388(2):305–314. https://doi.org/10.1016/j.virol.2009.03.031
doi: 10.1016/j.virol.2009.03.031 pubmed: 19395054
Eriksson KK, Cervantes-Barragan L, Ludewig B, Thiel V (2008) Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1’’-phosphatase, a viral function conserved in the alpha-like supergroup. J Virol 82(24):12325–12334. https://doi.org/10.1128/JVI.02082-08
doi: 10.1128/JVI.02082-08 pubmed: 18922871 pmcid: 2593347
Abraham R, McPherson RL, Dasovich M, Badiee M, Leung AKL, Griffin DE (2020) Both ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macrodomain affect neurovirulence in mice. MBio. https://doi.org/10.1128/mBio.03253-19
doi: 10.1128/mBio.03253-19 pubmed: 32047134 pmcid: 7018654
V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V (2021) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19(3):155–170. https://doi.org/10.1038/s41579-020-00468-6
doi: 10.1038/s41579-020-00468-6 pubmed: 33116300
de Wit E, van Doremalen N, Falzarano D, Munster VJ (2016) SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14(8):523–534. https://doi.org/10.1038/nrmicro.2016.81
doi: 10.1038/nrmicro.2016.81 pubmed: 27344959 pmcid: 7097822
Coronaviridae Study Group of the International Committee on Taxonomy of V (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5(4):536–544. https://doi.org/10.1038/s41564-020-0695-z
doi: 10.1038/s41564-020-0695-z
Michalska K, Kim Y, Jedrzejczak R, Maltseva NI, Stols L, Endres M et al (2020) Crystal structures of SARS-CoV-2 ADP-ribose phosphatase: from the apo form to ligand complexes. IUCrJ 7(Pt 5):814–824. https://doi.org/10.1107/S2052252520009653
doi: 10.1107/S2052252520009653 pubmed: 32939273 pmcid: 7467174
Frick DN, Virdi RS, Vuksanovic N, Dahal N, Silvaggi NR (2020) Molecular basis for ADP-ribose binding to the Mac1 domain of SARS-CoV-2 nsp3. Biochemistry (Mosc) 59(28):2608–2615. https://doi.org/10.1021/acs.biochem.0c00309
doi: 10.1021/acs.biochem.0c00309
Alhammad YMO, Fehr AR (2020) The viral macrodomain counters host antiviral ADP-Ribosylation. Viruses. https://doi.org/10.3390/v12040384
doi: 10.3390/v12040384 pubmed: 32244383 pmcid: 7232374
Voth LS, O’Connor JJ, Kerr CM, Doerger E, Schwarting N, Sperstad P et al (2021) Unique mutations in the MHV macrodomain differentially attenuate virus replication, indicating multiple roles for the macrodomain in coronavirus replication. J Virol. https://doi.org/10.1128/JVI.00766-21
doi: 10.1128/JVI.00766-21 pubmed: 34011547 pmcid: 8274620
Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R (2015) A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication-transcription complex. Virology 484:313–322. https://doi.org/10.1016/j.virol.2015.06.016
doi: 10.1016/j.virol.2015.06.016 pubmed: 26149721
Johnson MA, Chatterjee A, Neuman BW, Wuthrich K (2010) SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding. J Mol Biol 400(4):724–742. https://doi.org/10.1016/j.jmb.2010.05.027
doi: 10.1016/j.jmb.2010.05.027 pubmed: 20493876 pmcid: 2958096
Tan J, Kusov Y, Mutschall D, Tech S, Nagarajan K, Hilgenfeld R et al (2007) The “SARS-unique domain” (SUD) of SARS coronavirus is an oligo(G)-binding protein. Biochem Biophys Res Commun 364(4):877–882. https://doi.org/10.1016/j.bbrc.2007.10.081
doi: 10.1016/j.bbrc.2007.10.081 pubmed: 17976532 pmcid: 7092865
Tan J, Vonrhein C, Smart OS, Bricogne G, Bollati M, Kusov Y et al (2009) The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. PLoS Pathog 5(5):e1000428. https://doi.org/10.1371/journal.ppat.1000428
doi: 10.1371/journal.ppat.1000428 pubmed: 19436709 pmcid: 2674928
Solignat M, Gay B, Higgs S, Briant L, Devaux C (2009) Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393(2):183–197. https://doi.org/10.1016/j.virol.2009.07.024 (S0042-6822(09)00456-5[pii])
doi: 10.1016/j.virol.2009.07.024 pubmed: 19732931
Gotte B, Liu L, McInerney GM (2018) The enigmatic alphavirus non-structural protein 3 (nsP3) revealing its secrets at last. Viruses. https://doi.org/10.3390/v10030105
doi: 10.3390/v10030105 pubmed: 29495654 pmcid: 5869498
Gorchakov R, Garmashova N, Frolova E, Frolov I (2008) Different types of nsP3-containing protein complexes in Sindbis virus-infected cells. J Virol 82(20):10088–10101. https://doi.org/10.1128/JVI.01011-08
doi: 10.1128/JVI.01011-08 pubmed: 18684830 pmcid: 2566286
Nowee G, Bakker JW, Geertsema C, Ros VID, Goertz GP, Fros JJ et al (2021) A tale of 20 alphaviruses; inter-species diversity and conserved interactions between viral non-structural protein 3 and stress granule proteins. Front Cell Dev Biol 9:625711. https://doi.org/10.3389/fcell.2021.625711
doi: 10.3389/fcell.2021.625711 pubmed: 33644063 pmcid: 7905232
Zaid A, Burt FJ, Liu X, Poo YS, Zandi K, Suhrbier A et al (2021) Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. Lancet Infect Dis 21(5):e123–e133. https://doi.org/10.1016/S1473-3099(20)30491-6
doi: 10.1016/S1473-3099(20)30491-6 pubmed: 33160445
Sukhralia S, Verma M, Gopirajan S, Dhanaraj PS, Lal R, Mehla N et al (2019) From dengue to Zika: the wide spread of mosquito-borne arboviruses. Eur J Clin Microbiol Infect Dis 38(1):3–14. https://doi.org/10.1007/s10096-018-3375-7
doi: 10.1007/s10096-018-3375-7 pubmed: 30267170
Yu M, Zhang C, Yang Y, Yang Z, Zhao L, Xu L et al (2011) The interaction between the PARP10 protein and the NS1 protein of H5N1 AIV and its effect on virus replication. Virol J 8:546. https://doi.org/10.1186/1743-422X-8-546
doi: 10.1186/1743-422X-8-546 pubmed: 22176891 pmcid: 3287249
Grunewald ME, Fehr AR, Athmer J, Perlman S (2018) The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 517:62–68. https://doi.org/10.1016/j.virol.2017.11.020
doi: 10.1016/j.virol.2017.11.020 pubmed: 29199039
Mazeaud C, Freppel W, Chatel-Chaix L (2018) The multiples fates of the flavivirus RNA genome during pathogenesis. Front Genet 9:595. https://doi.org/10.3389/fgene.2018.00595
doi: 10.3389/fgene.2018.00595 pubmed: 30564270 pmcid: 6288177
Bhardwaj A, Yang Y, Ueberheide B, Smith S (2017) Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation. Nat Commun 8(1):2214. https://doi.org/10.1038/s41467-017-02363-w
doi: 10.1038/s41467-017-02363-w pubmed: 29263426 pmcid: 5738441
Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW (2015) Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol 96(9):2483–2500. https://doi.org/10.1099/jgv.0.000249
doi: 10.1099/jgv.0.000249 pubmed: 26219641 pmcid: 4635493
Abdelnabi R, Delang L (2020) Antiviral strategies against arthritogenic alphaviruses. Microorganisms. https://doi.org/10.3390/microorganisms8091365
doi: 10.3390/microorganisms8091365 pubmed: 32906603 pmcid: 7563460
Saisawang C, Saitornuang S, Sillapee P, Ubol S, Smith DR, Ketterman AJ (2015) Chikungunya nsP2 protease is not a papain-like cysteine protease and the catalytic dyad cysteine is interchangeable with a proximal serine. Sci Rep 5:17125. https://doi.org/10.1038/srep17125
doi: 10.1038/srep17125 pubmed: 26597768 pmcid: 4657084
Tiwari V, Beer JC, Sankaranarayanan NV, Swanson-Mungerson M, Desai UR (2020) Discovering small-molecule therapeutics against SARS-CoV-2. Drug Discov Today 25(8):1535–1544. https://doi.org/10.1016/j.drudis.2020.06.017
doi: 10.1016/j.drudis.2020.06.017 pubmed: 32574699 pmcid: 7305878
Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S, Dhamija P et al (2021) Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells. https://doi.org/10.3390/cells10040821
doi: 10.3390/cells10040821 pubmed: 34831297 pmcid: 8621611
Diffley JFX (2021) Author’s overview: identifying SARS-CoV-2 antiviral compounds. Biochem J 478(13):2533–2535. https://doi.org/10.1042/BCJ20210426
doi: 10.1042/BCJ20210426 pubmed: 34198320
Fu W, Yao H, Butepage M, Zhao Q, Luscher B, Li J (2021) The search for inhibitors of macrodomains for targeting the readers and erasers of mono-ADP-ribosylation. Drug Discov Today 26(11):2547–2558. https://doi.org/10.1016/j.drudis.2021.05.007
doi: 10.1016/j.drudis.2021.05.007 pubmed: 34023495
Babar Z, Khan M, Zahra M, Anwar M, Noor K, Hashmi HF et al (2020) Drug similarity and structure-based screening of medicinal compounds to target macrodomain-I from SARS-CoV-2 to rescue the host immune system: a molecular dynamics study. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1815583
doi: 10.1080/07391102.2020.1815583 pubmed: 32897173 pmcid: 7544951
Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Diaz RE et al (2021) Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Sci Adv. https://doi.org/10.1126/sciadv.abf8711
doi: 10.1126/sciadv.abf8711 pubmed: 34730993 pmcid: 8565841
Brosey CA, Houl JH, Katsonis P, Balapiti-Modarage LPF, Bommagani S, Arvai A et al (2021) Targeting SARS-CoV-2 Nsp3 macrodomain structure with insights from human poly(ADP-ribose) glycohydrolase (PARG) structures with inhibitors. Prog Biophys Mol Biol 163:171–186. https://doi.org/10.1016/j.pbiomolbio.2021.02.002
doi: 10.1016/j.pbiomolbio.2021.02.002 pubmed: 33636189 pmcid: 7901392
Virdi RS, Bavisotto RV, Hopper NC, Vuksanovic N, Melkonian TR, Silvaggi NR et al (2020) Discovery of drug-like ligands for the mac1 domain of SARS-CoV-2 Nsp3. SLAS Discov 25(10):1162–1170. https://doi.org/10.1177/2472555220960428
doi: 10.1177/2472555220960428 pubmed: 32981460 pmcid: 7684785
Ni X, Schroder M, Olieric V, Sharpe ME, Hernandez-Olmos V, Proschak E et al (2021) Structural insights into plasticity and discovery of remdesivir metabolite GS-441524 Binding in SARS-CoV-2 Macrodomain. ACS Med Chem Lett 12(4):603–609. https://doi.org/10.1021/acsmedchemlett.0c00684
doi: 10.1021/acsmedchemlett.0c00684 pubmed: 33850605 pmcid: 7986975
Patel DC, Hausman KR, Arba M, Tran A, Lakernick PM, Wu C (2021) Novel inhibitors to ADP ribose phosphatase of SARS-CoV-2 identified by structure-based high throughput virtual screening and molecular dynamics simulations. Comput Biol Med 140:105084. https://doi.org/10.1016/j.compbiomed.2021.105084
doi: 10.1016/j.compbiomed.2021.105084 pubmed: 34891093 pmcid: 8629772
Sowa ST, Galera-Prat A, Wazir S, Alanen HI, Maksimainen MM, Lehtio L (2021) A molecular toolbox for ADP-ribosyl binding proteins. Cell Rep Methods. https://doi.org/10.1016/j.crmeth.2021.100121
doi: 10.1016/j.crmeth.2021.100121 pubmed: 34786571 pmcid: 8580838
Dasovich M, Zhuo J, Goodman JA, Thomas A, McPherson RL, Jayabalan AK et al (2021) High-throughput activity assay for screening inhibitors of the SARS-CoV-2 Mac1 Macrodomain. ACS Chem Biol. https://doi.org/10.1021/acschembio.1c00721
doi: 10.1021/acschembio.1c00721 pubmed: 34904435 pmcid: 8691451
Yin W, Luan X, Li Z, Zhou Z, Wang Q, Gao M et al (2021) Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nat Struct Mol Biol 28(3):319–325. https://doi.org/10.1038/s41594-021-00570-0
doi: 10.1038/s41594-021-00570-0 pubmed: 33674802
Wiedemar N, Hauser DA, Maser P (2020) 100 years of suramin. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01168-19
doi: 10.1128/AAC.01168-19 pubmed: 31844000 pmcid: 7038244
Salgado-Benvindo C, Thaler M, Tas A, Ogando NS, Bredenbeek PJ, Ninaber DK et al (2020) Suramin inhibits SARS-CoV-2 infection in cell culture by interfering with early steps of the replication cycle. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00900-20
doi: 10.1128/AAC.00900-20 pubmed: 32513797 pmcid: 7526844
Rossari F, Minutolo F, Orciuolo E (2018) Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol 11(1):84. https://doi.org/10.1186/s13045-018-0624-2
doi: 10.1186/s13045-018-0624-2 pubmed: 29925402 pmcid: 6011351
Li Y, Cao L, Li G, Cong F, Li Y, Sun J et al (2021) Remdesivir metabolite GS-441524 effectively inhibits SARS-CoV-2 infection in mouse models. J Med Chem. https://doi.org/10.1021/acs.jmedchem.0c01929
doi: 10.1021/acs.jmedchem.0c01929 pubmed: 34968054 pmcid: 9128806
Baxter VK, Heise MT (2020) Immunopathogenesis of alphaviruses. Adv Virus Res 107:315–382. https://doi.org/10.1016/bs.aivir.2020.06.002
doi: 10.1016/bs.aivir.2020.06.002 pubmed: 32711733 pmcid: 8224468
Schwartz O, Albert ML (2010) Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8(7):491–500. https://doi.org/10.1038/nrmicro2368
doi: 10.1038/nrmicro2368 pubmed: 20551973
Burt FJ, Chen W, Miner JJ, Lenschow DJ, Merits A, Schnettler E et al (2017) Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect Dis 17(4):e107–e117. https://doi.org/10.1016/S1473-3099(16)30385-1
doi: 10.1016/S1473-3099(16)30385-1 pubmed: 28159534
Puranik NV, Rani R, Singh VA, Tomar S, Puntambekar HM, Srivastava P (2019) Evaluation of the antiviral potential of halogenated dihydrorugosaflavonoids and molecular modeling with nsP3 protein of chikungunya virus (CHIKV). ACS Omega 4(23):20335–20345. https://doi.org/10.1021/acsomega.9b02900
doi: 10.1021/acsomega.9b02900 pubmed: 31815237 pmcid: 6893968
Shimizu JF, Martins DOS, McPhillie MJ, Roberts GC, Zothner C, Merits A et al (2020) Is the ADP ribose site of the Chikungunya virus NSP3 Macro domain a target for antiviral approaches? Acta Trop 207:105490. https://doi.org/10.1016/j.actatropica.2020.105490
doi: 10.1016/j.actatropica.2020.105490 pubmed: 32333884
Hussain W, Amir A, Rasool N (2020) Computer-aided study of selective flavonoids against chikungunya virus replication using molecular docking and DFT-based approach. Struct Chem 31(4):1363–1374. https://doi.org/10.1007/s11224-020-01507-x
doi: 10.1007/s11224-020-01507-x
Seyedi SS, Shukri M, Hassandarvish P, Oo A, Muthu SE, Abubakar S et al (2016) Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids. Sci Rep 6:24027. https://doi.org/10.1038/srep24027
doi: 10.1038/srep24027 pubmed: 27071308 pmcid: 4829834
Mattila S, Merilahti P, Wazir S, Quirin T, Maksimainen MM, Zhang Y et al (2021) Macrodomain binding compound MRS 2578 inhibits alphavirus replication. Antimicrob Agents Chemother 65(12):e0139821. https://doi.org/10.1128/AAC.01398-21
doi: 10.1128/AAC.01398-21 pubmed: 34606339
Bonfiglio JJ, Fontana P, Zhang Q, Colby T, Gibbs-Seymour I, Atanassov I et al (2017) Serine ADP-ribosylation depends on HPF1. Mol Cell. https://doi.org/10.1016/j.molcel.2017.01.003
doi: 10.1016/j.molcel.2017.01.003 pubmed: 28190768 pmcid: 5344681
Dale B, Cheng M, Park KS, Kaniskan HU, Xiong Y, Jin J (2021) Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer 21(10):638–654. https://doi.org/10.1038/s41568-021-00365-x
doi: 10.1038/s41568-021-00365-x pubmed: 34131295 pmcid: 8463487
Dong G, Ding Y, He S, Sheng C (2021) Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem 64(15):10606–10620. https://doi.org/10.1021/acs.jmedchem.1c00895
doi: 10.1021/acs.jmedchem.1c00895 pubmed: 34319094
Chan AH, Schroder K (2020) Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med. https://doi.org/10.1084/jem.20190314
doi: 10.1084/jem.20190314 pubmed: 32845958 pmcid: 7604765
Orning P, Lien E, Fitzgerald KA (2019) Gasdermins and their role in immunity and inflammation. J Exp Med 216(11):2453–2465. https://doi.org/10.1084/jem.20190545
doi: 10.1084/jem.20190545 pubmed: 31548300 pmcid: 6829603
Kim DS, Challa S, Jones A, Kraus WL (2020) PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev 34(5–6):302–320. https://doi.org/10.1101/gad.334433.119
doi: 10.1101/gad.334433.119 pubmed: 32029452 pmcid: 7050490
Stromland O, Niere M, Nikiforov AA, VanLinden MR, Heiland I, Ziegler M (2019) Keeping the balance in NAD metabolism. Biochem Soc Trans 47(1):119–130. https://doi.org/10.1042/BST20180417
doi: 10.1042/BST20180417 pubmed: 30626706
Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. https://doi.org/10.1016/j.tibs.2009.12.003
doi: 10.1016/j.tibs.2009.12.003 pubmed: 20106667
Suskiewicz MJ, Palazzo L, Hughes R, Ahel I (2021) Progress and outlook in studying the substrate specificities of PARPs and related enzymes. FEBS J 288(7):2131–2142. https://doi.org/10.1111/febs.15518
doi: 10.1111/febs.15518 pubmed: 32785980
Ashworth A, Lord CJ (2018) Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol 15(9):564–576. https://doi.org/10.1038/s41571-018-0055-6
doi: 10.1038/s41571-018-0055-6 pubmed: 29955114
Castellano S, Lobanov AV, Chapple C, Novoselov SV, Albrecht M, Hua D et al (2005) Diversity and functional plasticity of eukaryotic selenoproteins: identification and characterization of the SelJ family. Proc Natl Acad Sci U S A 102(45):16188–16193. https://doi.org/10.1073/pnas.0505146102
doi: 10.1073/pnas.0505146102 pubmed: 16260744 pmcid: 1283428
Rack JG, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, Qu Y et al (2015) Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol Cell 59(2):309–320. https://doi.org/10.1016/j.molcel.2015.06.013
doi: 10.1016/j.molcel.2015.06.013 pubmed: 26166706 pmcid: 4518038
Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ et al (2018) Bifunctional immunity proteins protect bacteria against FtsZ-targeting ADP-ribosylating toxins. Cell 175(5):1380–92.e14. https://doi.org/10.1016/j.cell.2018.09.037
doi: 10.1016/j.cell.2018.09.037 pubmed: 30343895 pmcid: 6239978

Auteurs

Bernhard Lüscher (B)

Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany. luescher@rwth-aachen.de.

Maud Verheirstraeten (M)

Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.

Sarah Krieg (S)

Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.

Patricia Korn (P)

Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany. pkorn@ukaachen.de.

Articles similaires

Glucose and glutamine drive hepatitis E virus replication.

Shaheen Khan, Suruchi Aggarwal, Pooja Bhatia et al.
1.00
Glutamine Virus Replication Hepatitis E virus Glucose Glycolysis
1.00
Animals Humans Membrane Proteins Immunity, Innate RNA-Binding Proteins

Evolution shapes and conserves genomic signatures in viruses.

Martin Holmudden, Joel Gustafsson, Yann J K Bertrand et al.
1.00
Genome, Viral Evolution, Molecular Viruses Genomics Codon Usage

The deadly dance of alveolar macrophages and influenza virus.

Camille David, Charles Verney, Mustapha Si-Tahar et al.
1.00
Humans Macrophages, Alveolar Animals Influenza, Human Host-Pathogen Interactions

Classifications MeSH