Evolution shapes and conserves genomic signatures in viruses.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 22 12 2023
accepted: 17 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

The genomic signature of an organism captures the characteristics of repeated oligonucleotide patterns in its genome

Identifiants

pubmed: 39478059
doi: 10.1038/s42003-024-07098-1
pii: 10.1038/s42003-024-07098-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1412

Subventions

Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2015-05307
Organisme : Svenska Forskningsrådet Formas (Swedish Research Council Formas)
ID : 2017/0009

Informations de copyright

© 2024. The Author(s).

Références

Karlin, S. & Burge, C. Dinucleotide relative abundance extremes: a genomic signature. Trends in Genet. 11, 403–409 (1995).
Sandberg, R., Branden, C. I., Ernberg, I. & Coster, J. Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G+C content. Gene 311, 35–42 (2003).
pubmed: 12853136 doi: 10.1016/S0378-1119(03)00581-X
Hooper, S. D. & Berg, O. G. Detection of genes with atypical nucleotide sequence in microbial genomes. J. Mol. Evol. 54, 365–375 (2002).
pubmed: 11847562 doi: 10.1007/s00239-001-0051-8
Coleman, J. R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008).
pubmed: 18583614 pmcid: 2754401 doi: 10.1126/science.1155761
Deschavanne, P. J., Giron, A., Vilain, J., Fagot, G. & Fertil, B. Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol. Biol. Evol. 16, 1391–1399 (1999).
pubmed: 10563018 doi: 10.1093/oxfordjournals.molbev.a026048
Dalevi, D., Dubhashi, D. & Hermansson, M. Bayesian classifiers for detecting HGT using fixed and variable order Markov models of genomic signatures. Bioinformatics 22, 517–522 (2006).
pubmed: 16403797 doi: 10.1093/bioinformatics/btk029
Norberg, P., Bergstrom, M., Jethava, V., Dubhashi, D. & Hermansson, M. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat. Commun. 2, 268 (2011).
pubmed: 21468020 doi: 10.1038/ncomms1267
de la Fuente, R., Díaz-Villanueva, W., Arnau, V. & Moya, A. Genomic signature in evolutionary biology: a review. Biology 12, https://doi.org/10.3390/biology12020322 (2023).
Karlin, S. & Ladunga, I. Comparisons of eukaryotic genomic sequences. Proc. Natl. Acad. Sci. USA 91, 12832–12836 (1994).
pubmed: 7809130 pmcid: 45534 doi: 10.1073/pnas.91.26.12832
Lobo, F. P. et al. Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS ONE 4, e6282 (2009).
pubmed: 19617912 pmcid: 2707012 doi: 10.1371/journal.pone.0006282
Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).
pubmed: 26657537 doi: 10.1093/femsre/fuv048
Buchan, J. R., Aucott, L. S. & Stansfield, I. tRNA properties help shape codon pair preferences in open reading frames. Nucleic Acids Res. 34, 1015–1027 (2006).
pubmed: 16473853 pmcid: 1363775 doi: 10.1093/nar/gkj488
Le Nouen, C. et al. Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc. Natl. Acad. Sci. USA 111, 13169–13174 (2014).
pubmed: 25157129 pmcid: 4246931 doi: 10.1073/pnas.1411290111
Mueller, S. et al. Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechnol. 28, 723–726 (2010).
pubmed: 20543832 pmcid: 2902615 doi: 10.1038/nbt.1636
Martrus, G., Nevot, M., Andres, C., Clotet, B. & Martinez, M. A. Changes in codon-pair bias of human immunodeficiency virus type 1 have profound effects on virus replication in cell culture. Retrovirology 10, 78 (2013).
pubmed: 23885919 pmcid: 3726367 doi: 10.1186/1742-4690-10-78
Kunec, D. & Osterrieder, N. Codon pair bias is a direct consequence of dinucleotide bias. Cell Rep. 14, 55–67 (2016).
pubmed: 26725119 doi: 10.1016/j.celrep.2015.12.011
Gustafsson, J., Norberg, P., Qvick-Wester, J. R. & Schliep, A. Fast parallel construction of variable-length Markov chains. BMC Bioinform. 22, 1–23 (2021).
doi: 10.1186/s12859-021-04387-y
Bühlmann, P. & Wyner, A. J. Variable length Markov chains. Ann. Stat. 27, 480–513 (1999).
doi: 10.1214/aos/1018031204
Alsop, E. B. & Raymond, J. Resolving prokaryotic taxonomy without rRNA: longer oligonucleotide word lengths improve genome and metagenome taxonomic classification. PLoS ONE 8, e67337 (2013).
pubmed: 23840870 pmcid: 3698125 doi: 10.1371/journal.pone.0067337
Deschavanne, P., Giron, A., Vilain, J., Dufraigne, C., & Fertil, B. Genomic signature is preserved in short DNA fragments. In Proc. IEEE International Symposium on Bio-Informatics and Biomedical Engineering 161–167. https://doi.org/10.1109/BIBE.2000.889603 (2000).
Chapus, C. et al. Exploration of phylogenetic data using a global sequence analysis method. BMC Evol. Biol. 5, 63 (2005).
pubmed: 16280081 pmcid: 1310607 doi: 10.1186/1471-2148-5-63
Yakovchuk, P., Protozanova, E., & Frank-Kamenetskii, M. D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–574 (2006).
pubmed: 16449200 pmcid: 1360284 doi: 10.1093/nar/gkj454
Sharp, P. M. & Li, W. H. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).
pubmed: 3547335 pmcid: 340524 doi: 10.1093/nar/15.3.1281
Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. 12, 32–42 (2011).
doi: 10.1038/nrg2899
Sharp, P. M. et al. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 16, 8207–8211 (1988).
pubmed: 3138659 pmcid: 338553 doi: 10.1093/nar/16.17.8207
Vieira, V. C. & Soares, M. A. The role of cytidine deaminases on innate immune responses against human viral infections. Biomed. Res. Int. 2013, 683095 (2013).
pubmed: 23865062 pmcid: 3707226 doi: 10.1155/2013/683095
Takata, M. A. et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550, 124–127 (2017).
pubmed: 28953888 pmcid: 6592701 doi: 10.1038/nature24039
Ringlander, J. et al. Impact of ADAR-induced editing of minor viral RNA populations on replication and transmission of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 119, https://doi.org/10.1073/pnas.2112663119 (2022).
Samuel, C. E. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 411, 180–193 (2011).
pubmed: 21211811 doi: 10.1016/j.virol.2010.12.004
Powdrill, M. H. et al. Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc. Natl. Acad. Sci. USA 108, 20509–20513 (2011).
pubmed: 22135458 pmcid: 3251051 doi: 10.1073/pnas.1105797108
Hayman, D. T. S. & Knox, M. A. Estimating the age of the subfamily Orthocoronavirinae using host divergence times as calibration ages at two internal nodes. Virology 563, 20–27 (2021).
pubmed: 34411808 doi: 10.1016/j.virol.2021.08.004
Wertheim, J. O., Chu, D. K., Peiris, J. S., Kosakovsky Pond, S. L. & Poon, L. L. A case for the ancient origin of coronaviruses. J. Virol. 87, 7039–7045 (2013).
pubmed: 23596293 pmcid: 3676139 doi: 10.1128/JVI.03273-12
Zhou, Z., Qiu, Y. & Ge, X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. Anim. Dis. 1, 5 (2021).
pubmed: 34778878 pmcid: 8062217 doi: 10.1186/s44149-021-00005-9
Mavrich, T. N. & Hatfull, G. F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol. 2, 17112 (2017).
pubmed: 28692019 pmcid: 5540316 doi: 10.1038/nmicrobiol.2017.112
Strand, M. R. & Burke, G. R. Polydnaviruses: from discovery to current insights. Virology 479, 393–402 (2015).
pubmed: 25670535 doi: 10.1016/j.virol.2015.01.018
Herniou, E. A. et al. When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130051 (2013).
pubmed: 23938758 pmcid: 3758193 doi: 10.1098/rstb.2013.0051
Fan, R. L. et al. Generation of live attenuated influenza virus by using codon usage bias. J. Virol. 89, 10762–10773 (2015).
pubmed: 26269186 pmcid: 4621104 doi: 10.1128/JVI.01443-15
Kypr, J. & Mrazek, J. Unusual codon usage of HIV. Nature 327, 20 (1987).
pubmed: 3646480 doi: 10.1038/327020a0
van Hemert, F., van der Kuyl, A. C. & Berkhout, B. Impact of the biased nucleotide composition of viral RNA genomes on RNA structure and codon usage. J. Gen. Virol. 97, 2608–2619 (2016).
pubmed: 27519195 doi: 10.1099/jgv.0.000579
Zhou, T., Gu, W., Ma, J., Sun, X. & Lu, Z. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems 81, 77–86 (2005).
pubmed: 15917130 doi: 10.1016/j.biosystems.2005.03.002
Simon, D., Cristina, J. & Musto, H. Nucleotide composition and codon usage across viruses and their respective hosts. Front. Microbiol. 12, 646300 (2021).
pubmed: 34262534 pmcid: 8274242 doi: 10.3389/fmicb.2021.646300
Fraser, C. et al. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science 343, 1243727 (2014).
pubmed: 24653038 pmcid: 5034889 doi: 10.1126/science.1243727
McGeoch, D. J., Dolan, A. & Ralph, A. C. Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol. 74, 10401–10406 (2000).
pubmed: 11044084 pmcid: 110914 doi: 10.1128/JVI.74.22.10401-10406.2000
He, T. et al. Host shutoff activity of VHS and SOX-like proteins: role in viral survival and immune evasion. Virol. J. 17, 68 (2020).
pubmed: 32430029 pmcid: 7235440 doi: 10.1186/s12985-020-01336-8
Hennig, T., Djakovic, L., Dölken, L. & Whisnant, A. W. A review of the multipronged attack of herpes simplex virus 1 on the host transcriptional machinery. Viruses 13, https://doi.org/10.3390/v13091836 (2021).
Dolan, P. T., Whitfield, Z. J. & Andino, R. Mapping the evolutionary potential of RNA viruses. Cell Host Microbe 23, 435–446 (2018).
pubmed: 29649440 pmcid: 5908228 doi: 10.1016/j.chom.2018.03.012
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
pubmed: 31779668 pmcid: 6883579 doi: 10.1186/s13059-019-1891-0
Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).
pubmed: 27852649 pmcid: 5131823 doi: 10.1101/gr.210641.116
Morgulis, A., Gertz, E. M., Schaffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput. Biol. 13, 1028–1040 (2006).
pubmed: 16796549 doi: 10.1089/cmb.2006.13.1028
Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).
pubmed: 26938550 pmcid: 4810256 doi: 10.3390/v8030066
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Ron, D., Singer, Y. & Tishby, N. The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn. 25, 117–149 (1997).
doi: 10.1007/BF00114008
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
doi: 10.1214/aos/1176344136
Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
pubmed: 3447015
Talevich, E., Invergo, B. M., Cock, P. J. & Chapman, B. A. Bio.Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinform. 13, 209 (2012).
doi: 10.1186/1471-2105-13-209
Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).
pubmed: 26921390 pmcid: 4868116 doi: 10.1093/molbev/msw046

Auteurs

Martin Holmudden (M)

Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Joel Gustafsson (J)

Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Yann J K Bertrand (YJK)

Laboratory of Molecular Biology and Bioinformatics, Institute of Botany, Czech Academy of Sciences, Prague, Czechia.

Alexander Schliep (A)

Department of Computer Science, Chalmers University of Technology, Gothenburg, Sweden.

Peter Norberg (P)

Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden. peter.norberg@gu.se.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH