Simple Rules for Complex Near-Glass-Transition Phenomena in Medium-Sized Schiff Bases.
Schiff bases
bifurcated hydrogen bonds
dielectric spectroscopy
glass transition
molecular mobility
self-organization
supercooled liquid
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
06 May 2022
06 May 2022
Historique:
received:
10
04
2022
revised:
01
05
2022
accepted:
03
05
2022
entrez:
14
5
2022
pubmed:
15
5
2022
medline:
18
5
2022
Statut:
epublish
Résumé
Glass-forming ability is one of the most desired properties of organic compounds dedicated to optoelectronic applications. Therefore, finding general structure-property relationships and other rules governing vitrification and related near-glass-transition phenomena is a burning issue for numerous compound families, such as Schiff bases. Hence, we employ differential scanning calorimetry, broadband dielectric spectroscopy, X-ray diffraction and quantum density functional theory calculations to investigate near-glass-transition phenomena, as well as ambient- and high-pressure molecular dynamics for two structurally related Schiff bases belonging to the family of glycine imino esters. Firstly, the surprising great stability of the supercooled liquid phase is shown for these compounds, also under high-pressure conditions. Secondly, atypical self-organization via bifurcated hydrogen bonds into lasting centrosymmetric dimers is proven. Finally, by comparing the obtained results with the previous report, some general rules that govern ambient- and high-pressure molecular dynamics and near-glass transition phenomena are derived for the family of glycine imino esters. Particularly, we derive a mathematical formula to predict and tune their glass transition temperature (
Identifiants
pubmed: 35563574
pii: ijms23095185
doi: 10.3390/ijms23095185
pmc: PMC9103181
pii:
doi:
Substances chimiques
Schiff Bases
0
Glycine
TE7660XO1C
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
J Phys Chem Lett. 2021 Mar 4;12(8):2142-2147
pubmed: 33625856
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 1):031501
pubmed: 15089297
J Chem Phys. 2018 May 28;148(20):204510
pubmed: 29865811
Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789
pubmed: 9944570
J Phys Chem C Nanomater Interfaces. 2014 Jun 19;118(24):13070-13086
pubmed: 24966893
Phys Rev Lett. 2016 Jan 15;116(2):025702
pubmed: 26824551
Angew Chem Int Ed Engl. 2018 May 4;57(19):5350-5354
pubmed: 29493860
J Phys Condens Matter. 2012 Feb 15;24(6):065105
pubmed: 22277923
J Chem Phys. 2015 Jun 14;142(22):224507
pubmed: 26071720
Nature. 2001 Mar 8;410(6825):259-67
pubmed: 11258381
J Phys Chem Lett. 2021 Nov 25;12(46):11303-11307
pubmed: 34780195
J Am Chem Soc. 2011 Dec 28;133(51):20750-3
pubmed: 22121915
Science. 1995 Mar 31;267(5206):1924-35
pubmed: 17770101
Org Lett. 2012 Sep 7;14(17):4410-3
pubmed: 22900645
Chemistry. 2003 Feb 17;9(4):963-70
pubmed: 12584712
Phys Rev E. 2020 Jan;101(1-1):010603
pubmed: 32069682
Chem Rev. 2007 Nov;107(11):4584-671
pubmed: 17915933
J Phys Chem Lett. 2021 Jan 14;12(1):245-249
pubmed: 33331778