Aqueous Chlorination of D-Limonene.


Journal

Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009

Informations de publication

Date de publication:
06 May 2022
Historique:
received: 07 04 2022
revised: 30 04 2022
accepted: 03 05 2022
entrez: 14 5 2022
pubmed: 15 5 2022
medline: 20 5 2022
Statut: epublish

Résumé

Limonene (1-methyl-4-(1-methylethenyl)-cyclohexene) is one of the most widespread monocyclic terpenes, being both a natural and industrial compound. It is widely present in the environment, including in water supplies. Therefore, it may be subjected to aqueous chlorination at water treatment stations during drinking water preparation. Besides, being a component of numerous body care and cosmetic products, it may present at high levels in swimming pool waters and could also be subjected to aqueous chlorination. Laboratory experiments with aqueous chlorination of D-limonene demonstrated the prevalence of the conjugated electrophilic addition of HOCl molecule to the double bonds of the parent molecule as the primary reaction. The reaction obeys the Markovnikov rule, as the levels of the corresponding products were higher than those of the alternative ones. Fragmentation pattern in conditions of electron ionization enabled the assigning of the structures for four primary products. The major products of the chlorination are formed by the addition of two HOCl molecules to limonene. The reactions of electrophilic addition are usually accompanied by the reactions of elimination. Thus, the loss of water molecules from the products of various generations results in the reproduction of the double bond, which immediately reacts further. Thus, a cascade of addition-elimination reactions brings the most various isomeric polychlorinated species. At a ratio of limonene/active chlorine higher than 1:10, the final products of aqueous chlorination (haloforms) start forming, while brominated haloforms represent a notable portion of these products due to the presence of bromine impurities in the used NaOCl. It is worth mentioning that the bulk products of aqueous chlorination are less toxic in the bioluminescence test on

Identifiants

pubmed: 35566337
pii: molecules27092988
doi: 10.3390/molecules27092988
pmc: PMC9099452
pii:
doi:

Substances chimiques

Water Pollutants, Chemical 0
Chlorine 4R7X1O2820
Limonene 9MC3I34447

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Russian Foundation for Basic Research
ID : 19-33-90042
Organisme : Slovenian Research Agency
ID : P3-0388

Références

Environ Health Perspect. 2000 Dec;108(12):1139-45
pubmed: 11133393
Toxicol Lett. 2012 Mar 7;209(2):166-72
pubmed: 22212438
Environ Health Perspect. 1993 Dec;101 Suppl 6:39-44
pubmed: 7517351
Environ Sci Technol. 2009 May 15;43(10):3561-8
pubmed: 19544855
Int Arch Occup Environ Health. 2010 Feb;83(2):225-35
pubmed: 19902238
Sci Total Environ. 1998 Apr 23;215(1-2):135-56
pubmed: 9599458
Indoor Air. 2010 Aug;20(4):320-8
pubmed: 20557377
Arch Biochem Biophys. 2011 Apr 15;508(2):164-70
pubmed: 21215251
Eur J Mass Spectrom (Chichester). 2007;13(1):51-6
pubmed: 17878539
Environ Res. 2006 Sep;102(1):1-8
pubmed: 16620807
JAPCA. 1988 Mar;38(3):264-8
pubmed: 3379453
Chemosphere. 2020 Jan;239:124801
pubmed: 31520969
Indoor Air. 2006 Jun;16(3):179-91
pubmed: 16683937
Regul Toxicol Pharmacol. 1991 Feb;13(1):70-86
pubmed: 2024047
J Mass Spectrom. 2013 Nov;48(11):1232-40
pubmed: 24259212
Anal Chem. 2018 Jan 2;90(1):398-428
pubmed: 29112806
Sci Total Environ. 2021 Mar 20;761:144506
pubmed: 33360203
Environ Int. 2001 Jun;26(7-8):511-22
pubmed: 11485219
Environ Mol Mutagen. 2010 Oct-Dec;51(8-9):871-8
pubmed: 20839218
Water Res. 2017 Dec 15;127:183-190
pubmed: 29049967
Sci Rep. 2017 Sep 13;7(1):11479
pubmed: 28904369
Environ Pollut. 2018 Aug;239:416-427
pubmed: 29679939
Food Chem Toxicol. 2011 Oct;49(10):2471-94
pubmed: 21726592
Sci Total Environ. 2022 Jan 20;805:150380
pubmed: 34818770
Environ Sci Technol. 1994 Apr 1;28(4):606-13
pubmed: 22196542
Food Chem Toxicol. 2018 Oct;120:668-680
pubmed: 30075315
J Occup Environ Hyg. 2009 Mar;6(3):200-9
pubmed: 19152165
Molecules. 2021 Mar 25;26(7):
pubmed: 33805994
Sci Total Environ. 2018 Dec 15;645:1126-1134
pubmed: 30248837
Chemosphere. 2020 Dec;260:127557
pubmed: 32673871
Toxicol Lett. 2008 Oct 1;181(3):171-6
pubmed: 18723085
Environ Sci Technol. 2006 Dec 1;40(23):7175-85
pubmed: 17180964
Indoor Air. 2000 Dec;10(4):269-88
pubmed: 11089331
Food Chem Toxicol. 2018 Jun;116(Pt B):77-85
pubmed: 29649490
Int J Environ Res Public Health. 2010 Jan;7(1):314-24
pubmed: 20195448
Water Res. 2004 Oct;38(17):3713-8
pubmed: 15350423
Environ Int. 2020 Apr;137:105495
pubmed: 32120142
Environ Pollut. 2018 Oct;241:616-625
pubmed: 29886382
IARC Monogr Eval Carcinog Risks Hum. 1999;73:307-27
pubmed: 10804960
J Environ Monit. 2004 Sep;6(9):745-52
pubmed: 15346178

Auteurs

Albert T Lebedev (AT)

Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
MASSECO d.o.o., 6230 Postojna, Slovenia.

Elena A Detenchuk (EA)

Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.

Tomas B Latkin (TB)

Core Facility Arktika, Northern Arctic Federal University, 163002 Arkhangelsk, Russia.

Mojca Bavcon Kralj (M)

Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia.

Polonca Trebše (P)

Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia.

Articles similaires

Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Hydrochemical characterization and pCO

Kunarika Bhanot, M K Sharma, R D Kaushik
1.00
Rivers Environmental Monitoring Carbon Dioxide Water Pollutants, Chemical India
Wetlands Massachusetts Chlorides Groundwater Environmental Monitoring
1.00
Iran Drinking Water Humans Lithium Suicide, Attempted

Classifications MeSH