Electrically Accelerated Self-Healable Polyionic Liquid Copolymers.
electric current accelerated self-healing
poly(ionic liquid) copolymers
self-healing
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
revised:
22
04
2022
received:
28
03
2022
pubmed:
15
5
2022
medline:
18
6
2022
entrez:
14
5
2022
Statut:
ppublish
Résumé
Electrically accelerated self-healable poly(ionic liquids) copolymers that exhibit resistor-capacitor (RC) circuit properties are developed. At low alternating current (AC) frequencies these materials behave as a resistor (R), whereas at higher frequencies as a capacitor (C). These properties are attributed to a combination of dipolar and electrostatic interactions in (1-[(2-methacryloyloxy)ethyl]-3-butylimidazolium bis(trifluoromethyl-sulfonyl)imide) copolymerized with methyl methacrylate (MMA) monomers to form p(MEBIm-TSFI/MMA)] copolymers. When the monomer molar ratio (MEBIm-TSFI:MMA) is 40/60, these copolymers are capable of undergoing multiple damage-repair cycles and self-healing is accelerated by the application of alternating 1.0-4.0 V electric field (EF). Self-healing in the absence of EFs is facilitated by van der Waals (vdW) interactions, but the application of AC EF induces back and forth movement of charges against the opposing force that result in dithering of electrostatic dipoles giving rise to interchain physical crosslinks. Electrostatic inter- and intrachain interactions facilitated by copolymerization of ionic liquid monomers with typically dielectric acrylic-based monomers result in enhanced cohesive energy densities that accelerate the recovery of vdW forces facilitating self-healing. Incorporating ionic liquids into commodity polymers offers promising uses as green conducting solid polyelectrolytes in self-healable energy storage, energy-harvesting devices, and many other applications.
Identifiants
pubmed: 35567327
doi: 10.1002/smll.202201952
doi:
Substances chimiques
Ionic Liquids
0
Ions
0
Polymers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2201952Informations de copyright
© 2022 The Authors. Small published by Wiley-VCH GmbH.
Références
D. M. Correia, L. C. Fernandes, P. M. Martins, C. García-Astrain, C. M. Costa, J. Reguera, S. Lanceros-Méndez, Adv. Funct. Mater. 2020, 30, 1909736.
Y.-S. Ye, J. Rick, B.-J. Hwang, J. Mater. Chem. A 2013, 1, 2719.
K. N. Marsh, J. A. Boxall, R. Lichtenthaler, Fluid Phase Equilib. 2004, 219, 93.
G. Yu, D. Zhao, L. Wen, S. Yang, X. Chen, AIChE J. 2012, 58, 2885.
M. R. Gao, J. Yuan, M. Antonietti, Chem. - Eur. J. 2017, 23, 5391.
J. Yuan, D. Mecerreyes, M. Antonietti, Prog. Polym. Sci. 2013, 38, 1009.
W. Qian, J. Texter, F. Yan, Chem. Soc. Rev. 2017, 46, 1124.
I. Osada, H. de Vries, B. Scrosati, S. Passerini, Angew. Chem., Int. Ed. 2016, 55, 500.
M. W. Urban, D. Davydovich, Y. Yang, T. Demir, Y. Zhang, L. Casabianca, Science 2018, 362, 220.
D. Davydovich, M. W. Urban, Nat. Commun. 2020, 11, 1.
S. Wang, M. W. Urban, Adv. Sci. 2021, 8, 2101399.
J. G. Lyagaeva, G. K. Vdovin, D. A. Medvedev, J. Phys. Chem. C 2019, 123, 21993.
I. Noda, J. Am. Chem. Soc. 1989, 111, 8116.