Electrically Accelerated Self-Healable Polyionic Liquid Copolymers.

electric current accelerated self-healing poly(ionic liquid) copolymers self-healing

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
06 2022
Historique:
revised: 22 04 2022
received: 28 03 2022
pubmed: 15 5 2022
medline: 18 6 2022
entrez: 14 5 2022
Statut: ppublish

Résumé

Electrically accelerated self-healable poly(ionic liquids) copolymers that exhibit resistor-capacitor (RC) circuit properties are developed. At low alternating current (AC) frequencies these materials behave as a resistor (R), whereas at higher frequencies as a capacitor (C). These properties are attributed to a combination of dipolar and electrostatic interactions in (1-[(2-methacryloyloxy)ethyl]-3-butylimidazolium bis(trifluoromethyl-sulfonyl)imide) copolymerized with methyl methacrylate (MMA) monomers to form p(MEBIm-TSFI/MMA)] copolymers. When the monomer molar ratio (MEBIm-TSFI:MMA) is 40/60, these copolymers are capable of undergoing multiple damage-repair cycles and self-healing is accelerated by the application of alternating 1.0-4.0 V electric field (EF). Self-healing in the absence of EFs is facilitated by van der Waals (vdW) interactions, but the application of AC EF induces back and forth movement of charges against the opposing force that result in dithering of electrostatic dipoles giving rise to interchain physical crosslinks. Electrostatic inter- and intrachain interactions facilitated by copolymerization of ionic liquid monomers with typically dielectric acrylic-based monomers result in enhanced cohesive energy densities that accelerate the recovery of vdW forces facilitating self-healing. Incorporating ionic liquids into commodity polymers offers promising uses as green conducting solid polyelectrolytes in self-healable energy storage, energy-harvesting devices, and many other applications.

Identifiants

pubmed: 35567327
doi: 10.1002/smll.202201952
doi:

Substances chimiques

Ionic Liquids 0
Ions 0
Polymers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2201952

Informations de copyright

© 2022 The Authors. Small published by Wiley-VCH GmbH.

Références

D. M. Correia, L. C. Fernandes, P. M. Martins, C. García-Astrain, C. M. Costa, J. Reguera, S. Lanceros-Méndez, Adv. Funct. Mater. 2020, 30, 1909736.
Y.-S. Ye, J. Rick, B.-J. Hwang, J. Mater. Chem. A 2013, 1, 2719.
K. N. Marsh, J. A. Boxall, R. Lichtenthaler, Fluid Phase Equilib. 2004, 219, 93.
G. Yu, D. Zhao, L. Wen, S. Yang, X. Chen, AIChE J. 2012, 58, 2885.
M. R. Gao, J. Yuan, M. Antonietti, Chem. - Eur. J. 2017, 23, 5391.
J. Yuan, D. Mecerreyes, M. Antonietti, Prog. Polym. Sci. 2013, 38, 1009.
W. Qian, J. Texter, F. Yan, Chem. Soc. Rev. 2017, 46, 1124.
I. Osada, H. de Vries, B. Scrosati, S. Passerini, Angew. Chem., Int. Ed. 2016, 55, 500.
M. W. Urban, D. Davydovich, Y. Yang, T. Demir, Y. Zhang, L. Casabianca, Science 2018, 362, 220.
D. Davydovich, M. W. Urban, Nat. Commun. 2020, 11, 1.
S. Wang, M. W. Urban, Adv. Sci. 2021, 8, 2101399.
J. G. Lyagaeva, G. K. Vdovin, D. A. Medvedev, J. Phys. Chem. C 2019, 123, 21993.
I. Noda, J. Am. Chem. Soc. 1989, 111, 8116.

Auteurs

Qianhui Liu (Q)

Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA.

Siyang Wang (S)

Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA.

Zeyu Zhao (Z)

Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA.

Jianhua Tong (J)

Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA.

Marek W Urban (MW)

Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Animals Huntington Disease Mitochondria Neurons Mice
Nanoparticles Needles Polylactic Acid-Polyglycolic Acid Copolymer Polyethylene Glycols Curcumin

Strain learning in protein-based mechanical metamaterials.

Naroa Sadaba, Eva Sanchez-Rexach, Curt Waltmann et al.
1.00
Serum Albumin, Bovine Stress, Mechanical Animals Polymers Materials Testing

Classifications MeSH