Segmenting electroencephalography wires reduces radiofrequency shielding artifacts in simultaneous electroencephalography and functional magnetic resonance imaging at 7 T.
7T
EEG cap
EEG-fMRI
electromagnetic simulations
shielding artifacts
ultra-high field
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
16
04
2022
received:
13
09
2021
accepted:
18
04
2022
pubmed:
17
5
2022
medline:
1
7
2022
entrez:
16
5
2022
Statut:
ppublish
Résumé
Simultaneous scalp electroencephalography and functional magnetic resonance imaging (EEG-fMRI) enable noninvasive assessment of brain function with high spatial and temporal resolution. However, at ultra-high field, the data quality of both modalities is degraded by mutual interactions. Here, we thoroughly investigated the radiofrequency (RF) shielding artifact of a state-of-the-art EEG-fMRI setup, at 7 T, and design a practical solution to limit this issue. Electromagnetic field simulations and MR measurements assessed the shielding effect of the EEG setup, more specifically the EEG wiring. The effectiveness of segmenting the wiring with resistors to reduce the transmit field disruption was evaluated on a wire-only EEG model and a simulation model of the EEG cap. The EEG wiring was found to exert a dominant effect on the disruption of the transmit field, whose intensity varied periodically as a function of the wire length. Breaking the electrical continuity of the EEG wires into segments shorter than one quarter RF wavelength in air (25 cm at 7 T) reduced significantly the RF shielding artifacts. Simulations of the EEG cap with segmented wires indicated similar improvements for a moderate increase of the power deposition. We demonstrated that segmenting the EEG wiring into shorter lengths using commercially available nonmagnetic resistors is effective at reducing RF shielding artifacts in simultaneous EEG-fMRI. This prevents the formation of RF-induced standing waves, without substantial specific absorption rate (SAR) penalties, and thereby enables benefiting from the functional sensitivity boosts achievable at ultra-high field.
Identifiants
pubmed: 35575944
doi: 10.1002/mrm.29298
pmc: PMC9323442
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1450-1464Informations de copyright
© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Références
MAGMA. 2010 Dec;23(5-6):309-16
pubmed: 20101434
Neuroimage. 2015 Oct 15;120:143-53
pubmed: 26169325
Magn Reson Med. 1997 Dec;38(6):943-52
pubmed: 9402196
Magn Reson Med. 2017 Feb;77(2):895-903
pubmed: 26876960
Neuroimage. 2002 Oct;17(2):825-41
pubmed: 12377157
J Magn Reson Imaging. 2001 Apr;13(4):627-31
pubmed: 11276109
Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72
pubmed: 2124706
Int J Psychophysiol. 2008 Mar;67(3):178-88
pubmed: 17689767
Int J Psychophysiol. 2008 Mar;67(3):189-99
pubmed: 17683819
J Magn Reson Imaging. 2007 Apr;25(4):872-7
pubmed: 17345636
J Vis Exp. 2013 Jun 03;(76):
pubmed: 23770804
Magn Reson Med. 2012 Jun;67(6):1609-19
pubmed: 22135168
Neuroimage. 2015 Jan 15;105:132-44
pubmed: 25449743
Magn Reson Med. 2012 Sep;68(3):807-15
pubmed: 22161695
PLoS One. 2019 Aug 7;14(8):e0220043
pubmed: 31390346
Anal Biochem. 2017 Jul 15;529:10-16
pubmed: 28365170
Epilepsia. 2013 Dec;54(12):2184-94
pubmed: 24304438
Magn Reson Med. 2002 Dec;48(6):1096-8
pubmed: 12465125
Bioelectromagnetics. 2004 May;25(4):285-95
pubmed: 15114638
Neuroimage. 2019 Jan 1;184:566-576
pubmed: 30243973
Magn Reson Med. 2022 Sep;88(3):1450-1464
pubmed: 35575944
Phys Med Biol. 2009 Jul 7;54(13):4151-69
pubmed: 19521007
Magn Reson Med. 2004 Nov;52(5):1200-6
pubmed: 15508156
Neurodiagn J. 2017;57(1):69-83
pubmed: 28436813
J Magn Reson Imaging. 2000 Jul;12(1):75-8
pubmed: 10931566
Trends Cogn Sci. 2006 Dec;10(12):558-63
pubmed: 17074530
IEEE Trans Electromagn Compat. 2021 Oct;63(5):1748-1756
pubmed: 34675444
IEEE Trans Electromagn Compat. 2019 Jun;61(3):852-859
pubmed: 31210669
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Neuroimage. 2001 Sep;14(3):780-7
pubmed: 11506550
Int J Psychophysiol. 2008 Mar;67(3):161-8
pubmed: 17719112
Front Neurosci. 2017 Jan 26;11:15
pubmed: 28184184
Magn Reson Med. 2019 Sep;82(3):1229-1241
pubmed: 31081176
J Magn Reson. 2009 Sep;200(1):147-52
pubmed: 19570700
Phys Med Biol. 2002 Aug 21;47(16):2973-85
pubmed: 12222860
Magn Reson Imaging. 2006 Jul;24(6):801-12
pubmed: 16824975
Neuroimage. 2006 Dec;33(4):1082-92
pubmed: 17035045
Methods Mol Biol. 2011;711:303-26
pubmed: 21279609
Magn Reson Imaging. 2008 Sep;26(7):968-77
pubmed: 18508217
Neurology. 2012 May 8;78(19):1479-87
pubmed: 22539574
Phys Med Biol. 2014 Sep 21;59(18):5287-303
pubmed: 25144615