Targeting DEAD-box RNA helicases: The emergence of molecular staples.

DDX proteins RNA helicase chemical biology helicase inhibitors molecular staples

Journal

Wiley interdisciplinary reviews. RNA
ISSN: 1757-7012
Titre abrégé: Wiley Interdiscip Rev RNA
Pays: United States
ID NLM: 101536955

Informations de publication

Date de publication:
03 2023
Historique:
revised: 13 04 2022
received: 15 02 2022
accepted: 16 04 2022
pubmed: 19 5 2022
medline: 15 3 2023
entrez: 18 5 2022
Statut: ppublish

Résumé

RNA helicases constitute a large family of proteins that play critical roles in mediating RNA function. They have been implicated in all facets of gene expression pathways involving RNA, from transcription to processing, transport and translation, and storage and decay. There is significant interest in developing small molecule inhibitors to RNA helicases as some family members have been documented to be dysregulated in neurological and neurodevelopment disorders, as well as in cancers. Although different functional properties of RNA helicases offer multiple opportunities for small molecule development, molecular staples have recently come to the forefront. These bifunctional molecules interact with both protein and RNA components to lock them together, thereby imparting novel gain-of-function properties to their targets. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.

Identifiants

pubmed: 35581936
doi: 10.1002/wrna.1738
doi:

Substances chimiques

RNA 63231-63-0
DEAD-box RNA Helicases EC 3.6.4.13
RNA Helicases EC 3.6.4.13

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1738

Subventions

Organisme : CIHR
ID : FDN-148366
Pays : Canada

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Abdelhaleem, M. (2004). Over-expression of RNA helicases in cancer. Anticancer Research, 24(6), 3951-3953.
Abdelkrim, Y. Z., Harigua-Souiai, E., Barhoumi, M., Banroques, J., Blondel, A., Guizani, I., & Tanner, N. K. (2018). The steroid derivative 6-aminocholestanol inhibits the DEAD-box helicase eIF4A (LieIF4A) from the Trypanosomatid parasite Leishmania by perturbing the RNA and ATP binding sites. Molecular and Biochemical Parasitology, 226, 9-19. https://doi.org/10.1016/j.molbiopara.2018.10.001
Alcazar-Roman, A. R., Tran, E. J., Guo, S., & Wente, S. R. (2006). Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nature Cell Biology, 8(7), 711-716. https://doi.org/10.1038/ncb1427
Alkallas, R., Lajoie, M., Moldoveanu, D., Vo Hoang, K., Lefrançois, P., Lingrand, M., Ahanfeshar-Adams, M., Watters, K., Spatz, A., Zippin, J. H., Najafabadi, H. S., & Watson, I. R. (2020). Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor in cutaneous melanoma. Nature Cancer, 1, 635-652.
Andersen, C. B., Ballut, L., Johansen, J. S., Chamieh, H., Nielsen, K. H., Oliveira, C. L., Pedersen, J. S., Seraphin, B., Le Hir, H., & Andersen, G. R. (2006). Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science, 313(5795), 1968-1972. https://doi.org/10.1126/science.1131981
Andreou, A. Z., & Klostermeier, D. (2013). The DEAD-box helicase eIF4A: Paradigm or the odd one out? RNA Biology, 10(1), 19-32. https://doi.org/10.4161/rna.21966
Ballut, L., Marchadier, B., Baguet, A., Tomasetto, C., Seraphin, B., & Le Hir, H. (2005). The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nature Structural & Molecular Biology, 12(10), 861-869. https://doi.org/10.1038/nsmb990
Bates, G. J., Nicol, S. M., Wilson, B. J., Jacobs, A. M., Bourdon, J. C., Wardrop, J., Gregory, D. J., Lane, D. P., Perkins, N. D., & Fuller-Pace, F. V. (2005). The DEAD box protein p68: A novel transcriptional coactivator of the p53 tumour suppressor. The EMBO Journal, 24(3), 543-553. https://doi.org/10.1038/sj.emboj.7600550
Bhat, K. P., Itahana, K., Jin, A., & Zhang, Y. (2004). Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. The EMBO Journal, 23(12), 2402-2412. https://doi.org/10.1038/sj.emboj.7600247
Bhat, M., Robichaud, N., Hulea, L., Sonenberg, N., Pelletier, J., & Topisirovic, I. (2015). Targeting the translation machinery in cancer. Nature Reviews. Drug Discovery, 14(4), 261-278. https://doi.org/10.1038/nrd4505
Bol, G. M., Vesuna, F., Xie, M., Zeng, J., Aziz, K., Gandhi, N., Levine, A., Irving, A., Korz, D., Tantravedi, S., Heerma van Voss, M. R., Gabrielson, K., Bordt, E. A., Polster, B. M., Cope, L., van der Groep, P., Kondaskar, A., Rudek, M. A., Hosmane, R. S., … Raman, V. (2015). Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Molecular Medicine, 7(5), 648-669. https://doi.org/10.15252/emmm.201404368
Bol, G. M., Xie, M., & Raman, V. (2015). DDX3, a potential target for cancer treatment. Molecular Cancer, 14, 188. https://doi.org/10.1186/s12943-015-0461-7
Bono, F., Ebert, J., Lorentzen, E., & Conti, E. (2006). The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cells, 126(4), 713-725. https://doi.org/10.1016/j.cell.2006.08.006
Bordeleau, M. E., Robert, F., Gerard, B., Lindqvist, L., Chen, S. M., Wendel, H. G., Brem, B., Greger, H., Lowe, S. W., Porco, J. A., Jr., & Pelletier, J. (2008). Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. The Journal of Clinical Investigation, 118(7), 2651-2660. https://doi.org/10.1172/JCI34753
Bourgeois, C. F., Mortreux, F., & Auboeuf, D. (2016). The multiple functions of RNA helicases as drivers and regulators of gene expression. Nature Reviews. Molecular Cell Biology, 17(7), 426-438. https://doi.org/10.1038/nrm.2016.50
Brai, A., Boccuto, A., Monti, M., Marchi, S., Vicenti, I., Saladini, F., Trivisani, C. I., Pollutri, A., Trombetta, C. M., Montomoli, E., Riva, V., Garbelli, A., Nola, E. M., Zazzi, M., Maga, G., Dreassi, E., & Botta, M. (2020). Exploring the implication of DDX3X in DENV infection: Discovery of the first-in-class DDX3X fluorescent inhibitor. ACS Medicinal Chemistry Letters, 11(5), 956-962. https://doi.org/10.1021/acsmedchemlett.9b00681
Brai, A., Fazi, R., Tintori, C., Zamperini, C., Bugli, F., Sanguinetti, M., Stigliano, E., Este, J., Badia, R., Franco, S., Martinez, M. A., Martinez, J. P., Meyerhans, A., Saladini, F., Zazzi, M., Garbelli, A., Maga, G., & Botta, M. (2016). Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 5388-5393. https://doi.org/10.1073/pnas.1522987113
Brai, A., Riva, V., Clementi, L., Falsitta, L., Zamperini, C., Sinigiani, V., Festuccia, C., Sabetta, S., Aiello, D., Roselli, C., Garbelli, A., Trivisani, C. I., Maccari, L., Bugli, F., Sanguinetti, M., Calandro, P., Chiariello, M., Quaranta, P., Botta, L., … Botta, M. (2021). Targeting DDX3X helicase activity with BA103 shows promising therapeutic effects in preclinical glioblastoma models. Cancers (Basel), 13(21), 5569. https://doi.org/10.3390/cancers13215569
Brai, A., Riva, V., Saladini, F., Zamperini, C., Trivisani, C. I., Garbelli, A., Pennisi, C., Giannini, A., Boccuto, A., Bugli, F., Martini, M., Sanguinetti, M., Zazzi, M., Dreassi, E., Botta, M., & Maga, G. (2020). DDX3X inhibitors, an effective way to overcome HIV-1 resistance targeting host proteins. European Journal of Medicinal Chemistry, 200, 112319. https://doi.org/10.1016/j.ejmech.2020.112319
Buxbaum, A. R., Haimovich, G., & Singer, R. H. (2015). In the right place at the right time: Visualizing and understanding mRNA localization. Nature Reviews. Molecular Cell Biology, 16(2), 95-109. https://doi.org/10.1038/nrm3918
Calviello, L., Venkataramanan, S., Rogowski, K. J., Wyler, E., Wilkins, K., Tejura, M., Thai, B., Krol, J., Filipowicz, W., Landthaler, M., & Floor, S. N. (2021). DDX3 depletion represses translation of mRNAs with complex 5' UTRs. Nucleic Acids Research, 49(9), 5336-5350. https://doi.org/10.1093/nar/gkab287
Capasso, A., Bagby, S. M., Dailey, K. L., Currimjee, N., Yacob, B. W., Ionkina, A., Frank, J. G., Kim, D. J., George, C., Lee, Y. B., Benaim, E., Gittleman, B., Hartman, S. J., Tan, A. C., Kim, J., Pitts, T. M., Eckhardt, S. G., Tentler, J. J., & Diamond, J. R. (2019). First-in-class phosphorylated-p68 inhibitor RX-5902 inhibits beta-catenin signaling and demonstrates antitumor activity in triple-negative breast cancer. Molecular Cancer Therapeutics, 18(11), 1916-1925. https://doi.org/10.1158/1535-7163.MCT-18-1334
Cencic, R., Naineni, S. K., Pugsley, L., Senechal, P., Sahni, A., & Pelletier, J. (2020). CRISPR-based screen links an inhibitor of nonsense-mediated decay to eIF4A3 target engagement. ACS Chemical Biology, 15(6), 1621-1629. https://doi.org/10.1021/acschembio.0c00253
Chan, J. C., Hannan, K. M., Riddell, K., Ng, P. Y., Peck, A., Lee, R. S., Hung, S., Astle, M. V., Bywater, M., Wall, M., Poortinga, G., Jastrzebski, K., Sheppard, K. E., Hemmings, B. A., Hall, M. N., Johnstone, R. W., McArthur, G. A., Hannan, R. D., & Pearson, R. B. (2011). AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Science Signaling, 4(188), ra56. https://doi.org/10.1126/scisignal.2001754
Chapat, C., Jafarnejad, S. M., Matta-Camacho, E., Hesketh, G. G., Gelbart, I. A., Attig, J., Gkogkas, C. G., Alain, T., Stern-Ginossar, N., Fabian, M. R., Gingras, A. C., Duchaine, T. F., & Sonenberg, N. (2017). Cap-binding protein 4EHP effects translation silencing by microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 114(21), 5425-5430. https://doi.org/10.1073/pnas.1701488114
Chen, M., Asanuma, M., Takahashi, M., Shichino, Y., Mito, M., Fujiwara, K., Saito, H., Floor, S. N., Ingolia, N. T., Sodeoka, M., Dodo, K., Ito, T., & Iwasaki, S. (2021). Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide a. Cell Chemistry & Biology, 28(4), 475-486 e478. https://doi.org/10.1016/j.chembiol.2020.11.008
Chlon, T. M., Stepanchick, E., Hershberger, C. E., Daniels, N. J., Hueneman, K. M., Kuenzi Davis, A., Choi, K., Zheng, Y., Gurnari, C., Haferlach, T., Padgett, R. A., Maciejewski, J. P., & Starczynowski, D. T. (2021). Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia. Cell Stem Cell, 28(11), 1966-1981 e1966. https://doi.org/10.1016/j.stem.2021.08.004
Chu, J., Galicia-Vazquez, G., Cencic, R., Mills, J. R., Katigbak, A., Porco, J. A., Jr., & Pelletier, J. (2016). CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA helicase, eIF4A. Cell Reports, 15(11), 2340-2347. https://doi.org/10.1016/j.celrep.2016.05.005
Chu, J., & Pelletier, J. (2015). Targeting the eIF4A RNA helicase as an anti-neoplastic approach. Biochimica et Biophysica Acta, 1849(7), 781-791. https://doi.org/10.1016/j.bbagrm.2014.09.006
Chu, J., Zhang, W., Cencic, R., O'Connor, P. B. F., Robert, F., Devine, W. G., Selznick, A., Henkel, T., Merrick, W. C., Brown, L. E., Baranov, P. V., Porco, J. A., Jr., & Pelletier, J. (2020). Rocaglates induce gain-of-function alterations to eIF4A and eIF4F. Cell Reports, 30(8), 2481-2488 e2485. https://doi.org/10.1016/j.celrep.2020.02.002
Chuang, R. Y., Weaver, P. L., Liu, Z., & Chang, T. H. (1997). Requirement of the DEAD-box protein ded1p for messenger RNA translation. Science, 275(5305), 1468-1471. https://doi.org/10.1126/science.275.5305.1468
Clark, E. L., Coulson, A., Dalgliesh, C., Rajan, P., Nicol, S. M., Fleming, S., Heer, R., Gaughan, L., Leung, H. Y., Elliott, D. J., Fuller-Pace, F. V., & Robson, C. N. (2008). The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Research, 68(19), 7938-7946. https://doi.org/10.1158/0008-5472.CAN-08-0932
Coller, J. M., Tucker, M., Sheth, U., Valencia-Sanchez, M. A., & Parker, R. (2001). The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA, 7(12), 1717-1727. https://doi.org/10.1017/s135583820101994x
Conroy, S. C., Dever, T. E., Owens, C. L., & Merrick, W. C. (1990). Characterization of the 46,000-Dalton subunit of eIF-4F. Archives of Biochemistry and Biophysics, 282(2), 363-371.
Dai, M. S., Zeng, S. X., Jin, Y., Sun, X. X., David, L., & Lu, H. (2004). Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Molecular and Cellular Biology, 24(17), 7654-7668. https://doi.org/10.1128/MCB.24.17.7654-7668.2004
Dang, Y., Low, W. K., Xu, J., Gehring, N. H., Dietz, H. C., Romo, D., & Liu, J. O. (2009). Inhibition of nonsense-mediated mRNA decay by the natural product pateamine a through eukaryotic initiation factor 4AIII. The Journal of Biological Chemistry, 284(35), 23613-23621. https://doi.org/10.1074/jbc.M109.009985
David-Pfeuty, T. (2006). The flexible evolutionary anchorage-dependent Pardee's restriction point of mammalian cells: How its deregulation may lead to cancer. Biochimica et Biophysica Acta, 1765(1), 38-66. https://doi.org/10.1016/j.bbcan.2005.08.008
de la Cruz, J., Iost, I., Kressler, D., & Linder, P. (1997). The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5201-5206. https://doi.org/10.1073/pnas.94.10.5201
Diamond, J. R., Eckhardt, G., Gluck, L., Gutierrez, M., Peterson, C., Pila, R., & Benaim, E. (2017). 258P-Phase 1 study of RX-5902, a novel orally bioavailable inhibitor of phosphorylated P68, which prevents β-catenin translocation in advanced solid tumors. Annals of Oncology, 28(5), v83.
Dorrello, N. V., Peschiaroli, A., Guardavaccaro, D., Colburn, N. H., Sherman, N. E., & Pagano, M. (2006). S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science, 314(5798), 467-471. https://doi.org/10.1126/science.1130276
Dymock, B. W., Barril, X., Brough, P. A., Cansfield, J. E., Massey, A., McDonald, E., Hubbard, R. E., Surgenor, A., Roughley, S. D., Webb, P., Workman, P., Wright, L., & Drysdale, M. J. (2005). Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design. Journal of Medicinal Chemistry, 48(13), 4212-4215. https://doi.org/10.1021/jm050355z
Fairman-Williams, M. E., Guenther, U. P., & Jankowsky, E. (2010). SF1 and SF2 helicases: Family matters. Current Opinion in Structural Biology, 20(3), 313-324. https://doi.org/10.1016/j.sbi.2010.03.011
Ferreira, R., Schneekloth, J. S., Jr., Panov, K. I., Hannan, K. M., & Hannan, R. D. (2020). Targeting the RNA polymerase I transcription for cancer therapy comes of age. Cells, 9(2), 266. https://doi.org/10.3390/cells9020266
Fischer, N., & Weis, K. (2002). The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. The EMBO Journal, 21(11), 2788-2797. https://doi.org/10.1093/emboj/21.11.2788
Fuller-Pace, F. V. (2006). DExD/H box RNA helicases: Multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Research, 34(15), 4206-4215. https://doi.org/10.1093/nar/gkl460
Fumagalli, S., Di Cara, A., Neb-Gulati, A., Natt, F., Schwemberger, S., Hall, J., Babcock, G. F., Bernardi, R., Pandolfi, P. P., & Thomas, G. (2009). Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nature Cell Biology, 11(4), 501-508. https://doi.org/10.1038/ncb1858
Garshott, D. M., An, H., Sundaramoorthy, E., Leonard, M., Vicary, A., Harper, J. W., & Bennett, E. J. (2021). iRQC, a surveillance pathway for 40S ribosomal quality control during mRNA translation initiation. Cell Reports, 36(9), 109642. https://doi.org/10.1016/j.celrep.2021.109642
Geissler, V., Altmeyer, S., Stein, B., Uhlmann-Schiffler, H., & Stahl, H. (2013). The RNA helicase Ddx5/p68 binds to hUpf3 and enhances NMD of Ddx17/p72 and Smg5 mRNA. Nucleic Acids Research, 41(16), 7875-7888. https://doi.org/10.1093/nar/gkt538
Graff, J. R., Konicek, B. W., Carter, J. H., & Marcusson, E. G. (2008). Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Research, 68(3), 631-634.
Gross, T., Siepmann, A., Sturm, D., Windgassen, M., Scarcelli, J. J., Seedorf, M., Cole, C. N., & Krebber, H. (2007). The DEAD-box RNA helicase Dbp5 functions in translation termination. Science, 315(5812), 646-649. https://doi.org/10.1126/science.1134641
Guenther, U. P., Weinberg, D. E., Zubradt, M. M., Tedeschi, F. A., Stawicki, B. N., Zagore, L. L., Brar, G. A., Licatalosi, D. D., Bartel, D. P., Weissman, J. S., & Jankowsky, E. (2018). The helicase Ded1p controls use of near-cognate translation initiation codons in 5' UTRs. Nature, 559(7712), 130-134. https://doi.org/10.1038/s41586-018-0258-0
Gupta, N., Lorsch, J. R., & Hinnebusch, A. G. (2018). Yeast Ded1 promotes 48S translation pre-initiation complex assembly in an mRNA-specific and eIF4F-dependent manner. eLife, 7, e38892. https://doi.org/10.7554/eLife.38892
Harigua-Souiai, E., Abdelkrim, Y. Z., Bassoumi-Jamoussi, I., Zakraoui, O., Bouvier, G., Essafi-Benkhadir, K., Banroques, J., Desdouits, N., Munier-Lehmann, H., Barhoumi, M., Tanner, N. K., Nilges, M., Blondel, A., & Guizani, I. (2018). Identification of novel leishmanicidal molecules by virtual and biochemical screenings targeting Leishmania eukaryotic translation initiation factor 4A. PLoS Neglected Tropical Diseases, 12(1), e0006160. https://doi.org/10.1371/journal.pntd.0006160
Heerma van Voss, M. R., Vesuna, F., Bol, G. M., Afzal, J., Tantravedi, S., Bergman, Y., Kammers, K., Lehar, M., Malek, R., Ballew, M., Ter Hoeve, N., Abou, D., Thorek, D., Berlinicke, C., Yazdankhah, M., Sinha, D., Le, A., Abrahams, R., Tran, P. T., … Raman, V. (2018). Targeting mitochondrial translation by inhibiting DDX3: A novel radiosensitization strategy for cancer treatment. Oncogene, 37(1), 63-74. https://doi.org/10.1038/onc.2017.308
Hilliker, A. (2012). Analysis of RNA helicases in P-bodies and stress granules. Methods in Enzymology, 511, 323-346. https://doi.org/10.1016/B978-0-12-396546-2.00015-2
Hsieh, A. L., Walton, Z. E., Altman, B. J., Stine, Z. E., & Dang, C. V. (2015). MYC and metabolism on the path to cancer. Seminars in Cell & Developmental Biology, 43, 11-21. https://doi.org/10.1016/j.semcdb.2015.08.003
Hu, Z., Yau, C., & Ahmed, A. A. (2017). A pan-cancer genome-wide analysis reveals tumour dependencies by induction of nonsense-mediated decay. Nature Communications, 8, 15943. https://doi.org/10.1038/ncomms15943
Huusko, P., Ponciano-Jackson, D., Wolf, M., Kiefer, J. A., Azorsa, D. O., Tuzmen, S., Weaver, D., Robbins, C., Moses, T., Allinen, M., Hautaniemi, S., Chen, Y., Elkahloun, A., Basik, M., Bova, G. S., Bubendorf, L., Lugli, A., Sauter, G., Schleutker, J., … Mousses, S. (2004). Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nature Genetics, 36(9), 979-983. https://doi.org/10.1038/ng1408
Ionov, Y., Nowak, N., Perucho, M., Markowitz, S., & Cowell, J. K. (2004). Manipulation of nonsense mediated decay identifies gene mutations in colon cancer cells with microsatellite instability. Oncogene, 23(3), 639-645. https://doi.org/10.1038/sj.onc.1207178
Ito, M., Iwatani, M., Kamada, Y., Sogabe, S., Nakao, S., Tanaka, T., Kawamoto, T., Aparicio, S., Nakanishi, A., & Imaeda, Y. (2017). Discovery of selective ATP-competitive eIF4A3 inhibitors. Bioorganic & Medicinal Chemistry, 25(7), 2200-2209. https://doi.org/10.1016/j.bmc.2017.02.035
Ito, M., Tanaka, T., Cary, D. R., Iwatani-Yoshihara, M., Kamada, Y., Kawamoto, T., Aparicio, S., Nakanishi, A., & Imaeda, Y. (2017). Discovery of novel 1,4-diacylpiperazines as selective and cell-active eIF4A3 inhibitors. Journal of Medicinal Chemistry, 60(8), 3335-3351. https://doi.org/10.1021/acs.jmedchem.6b01904
Iwasaki, S., Floor, S. N., & Ingolia, N. T. (2016). Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature, 534(7608), 558-561. https://doi.org/10.1038/nature17978
Iwasaki, S., Iwasaki, W., Takahashi, M., Sakamoto, A., Watanabe, C., Shichino, Y., Floor, S. N., Fujiwara, K., Mito, M., Dodo, K., Sodeoka, M., Imataka, H., Honma, T., Fukuzawa, K., Ito, T., & Ingolia, N. T. (2019). The translation inhibitor Rocaglamide targets a bimolecular cavity between eIF4A and Polypurine RNA. Molecular Cell, 73(4), 738-748 e739. https://doi.org/10.1016/j.molcel.2018.11.026
Iwatani-Yoshihara, M., Ito, M., Ishibashi, Y., Oki, H., Tanaka, T., Morishita, D., Ito, T., Kimura, H., Imaeda, Y., Aparicio, S., Nakanishi, A., & Kawamoto, T. (2017). Discovery and characterization of a eukaryotic initiation factor 4A-3-selective inhibitor that suppresses nonsense-mediated mRNA decay. ACS Chemical Biology, 12(7), 1760-1768. https://doi.org/10.1021/acschembio.7b00041
Jankowsky, E. (2011). RNA helicases at work: Binding and rearranging. Trends in Biochemical Sciences, 36(1), 19-29. https://doi.org/10.1016/j.tibs.2010.07.008
Jarmoskaite, I., & Russell, R. (2014). RNA helicase proteins as chaperones and remodelers. Annual Review of Biochemistry, 83, 697-725. https://doi.org/10.1146/annurev-biochem-060713-035546
Jiang, C., Tang, Y., Ding, L., Tan, R., Li, X., Lu, J., Jiang, J., Cui, Z., Tang, Z., Li, W., Cao, Z., Schneider-Poetsch, T., Jiang, W., Luo, C., Ding, Y., Liu, J., & Dang, Y. (2019). Targeting the N terminus of eIF4AI for inhibition of its catalytic recycling. Cell Chemistry & Biology, 26(10), 1417-1426 e1415. https://doi.org/10.1016/j.chembiol.2019.07.010
Jones, D. T., Jager, N., Kool, M., Zichner, T., Hutter, B., Sultan, M., Cho, Y. J., Pugh, T. J., Hovestadt, V., Stutz, A. M., Rausch, T., Warnatz, H. J., Ryzhova, M., Bender, S., Sturm, D., Pleier, S., Cin, H., Pfaff, E., Sieber, L., … Lichter, P. (2012). Dissecting the genomic complexity underlying medulloblastoma. Nature, 488(7409), 100-105. https://doi.org/10.1038/nature11284
Kavarthapu, R., Anbazhagan, R., Raju, M., Morris, C. T., Pickel, J., & Dufau, M. L. (2019). Targeted knock-in mice with a human mutation in GRTH/DDX25 reveals the essential role of phosphorylated GRTH in spermatid development during spermatogenesis. Human Molecular Genetics, 28(15), 2561-2572. https://doi.org/10.1093/hmg/ddz079
Kim, W. J., Kim, J. H., & Jang, S. K. (2007). Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A. The EMBO Journal, 26(24), 5020-5032. https://doi.org/10.1038/sj.emboj.7601920
Kondaskar, A., Kondaskar, S., Kumar, R., Fishbein, J. C., Muvarak, N., Lapidus, R. G., Sadowska, M., Edelman, M. J., Bol, G. M., Vesuna, F., Raman, V., & Hosmane, R. S. (2010). Novel, broad Spectrum anti-cancer agents containing the tricyclic 5:7:5-fused Diimidazodiazepine ring system. ACS Medicinal Chemistry Letters, 2(3), 252-256. https://doi.org/10.1021/ml100281b
Kost, G. C., Yang, M. Y., Li, L., Zhang, Y., Liu, C. Y., Kim, D. J., Ahn, C. H., Lee, Y. B., & Liu, Z. R. (2015). A novel anti-cancer agent, 1-(3,5-Dimethoxyphenyl)-4-[(6-Fluoro-2-Methoxyquinoxalin-3-yl)Aminocarbonyl] Piperazine (RX-5902), interferes with beta-catenin function through Y593 Phospho-p68 RNA helicase. Journal of Cellular Biochemistry, 116(8), 1595-1601. https://doi.org/10.1002/jcb.25113
Kurosaki, T., Popp, M. W., & Maquat, L. E. (2019). Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nature Reviews. Molecular Cell Biology, 20(7), 406-420. https://doi.org/10.1038/s41580-019-0126-2
Lai, M. C., Lee, Y. H., & Tarn, W. Y. (2008). The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Molecular Biology of the Cell, 19(9), 3847-3858. https://doi.org/10.1091/mbc.E07-12-1264
Leitao, A. L., Costa, M. C., & Enguita, F. J. (2015). Unzippers, resolvers and sensors: A structural and functional biochemistry tale of RNA helicases. International Journal of Molecular Sciences, 16(2), 2269-2293. https://doi.org/10.3390/ijms16022269
Lindeboom, R. G., Supek, F., & Lehner, B. (2016). The rules and impact of nonsense-mediated mRNA decay in human cancers. Nature Genetics, 48(10), 1112-1118. https://doi.org/10.1038/ng.3664
Linder, P., & Jankowsky, E. (2011). From unwinding to clamping-The DEAD box RNA helicase family. Nature Reviews. Molecular Cell Biology, 12(8), 505-516. https://doi.org/10.1038/nrm3154
Lindqvist, L., Imataka, H., & Pelletier, J. (2008). Cap-dependent eukaryotic initiation factor-mRNA interactions probed by cross-linking. RNA, 14(5), 960-969. https://doi.org/10.1261/rna.971208
Lindqvist, L., Oberer, M., Reibarkh, M., Cencic, R., Bordeleau, M. E., Vogt, E., Marintchev, A., Tanaka, J., Fagotto, F., Altmann, M., Wagner, G., & Pelletier, J. (2008). Selective pharmacological targeting of a DEAD box RNA helicase. PLoS One, 3(2), e1583. https://doi.org/10.1371/journal.pone.0001583
Litchfield, K., Reading, J. L., Lim, E. L., Xu, H., Liu, P., Al-Bakir, M., Wong, Y. N. S., Rowan, A., Funt, S. A., Merghoub, T., Perkins, D., Lauss, M., Svane, I. M., Jonsson, G., Herrero, J., Larkin, J., Quezada, S. A., Hellmann, M. D., Turajlic, S., & Swanton, C. (2020). Escape from nonsense-mediated decay associates with anti-tumor immunogenicity. Nature Communications, 11(1), 3800. https://doi.org/10.1038/s41467-020-17526-5
Lohrum, M. A., Ludwig, R. L., Kubbutat, M. H., Hanlon, M., & Vousden, K. H. (2003). Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell, 3(6), 577-587. https://doi.org/10.1016/s1535-6108(03)00134-x
Maga, G., Falchi, F., Garbelli, A., Belfiore, A., Witvrouw, M., Manetti, F., & Botta, M. (2008). Pharmacophore modeling and molecular docking led to the discovery of inhibitors of human immunodeficiency virus-1 replication targeting the human cellular aspartic acid-glutamic acid-alanine-aspartic acid box polypeptide 3. Journal of Medicinal Chemistry, 51(21), 6635-6638. https://doi.org/10.1021/jm8008844
Maga, G., Falchi, F., Radi, M., Botta, L., Casaluce, G., Bernardini, M., Irannejad, H., Manetti, F., Garbelli, A., Samuele, A., Zanoli, S., Este, J. A., Gonzalez, E., Zucca, E., Paolucci, S., Baldanti, F., De Rijck, J., Debyser, Z., & Botta, M. (2011). Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity: Synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation. ChemMedChem, 6(8), 1371-1389. https://doi.org/10.1002/cmdc.201100166
Martin, R., Straub, A. U., Doebele, C., & Bohnsack, M. T. (2013). DExD/H-box RNA helicases in ribosome biogenesis. RNA Biology, 10(1), 4-18. https://doi.org/10.4161/rna.21879
Mazloomian, A., Araki, S., Ohori, M., El-Naggar, A. M., Yap, D., Bashashati, A., Nakao, S., Sorensen, P. H., Nakanishi, A., Shah, S., & Aparicio, S. (2019). Pharmacological systems analysis defines EIF4A3 functions in cell-cycle and RNA stress granule formation. Communications Biology, 2, 165. https://doi.org/10.1038/s42003-019-0391-9
Mizojiri, R., Nakata, D., Satoh, Y., Morishita, D., Shibata, S., Iwatani-Yoshihara, M., Kosugi, Y., Kosaka, M., Takeda, J., Sasaki, S., Takami, K., Fukuda, K., Kamaura, M., Sasaki, S., Arai, R., Cary, D. R., & Imaeda, Y. (2017). Discovery of novel 5-(Piperazine-1-carbonyl)pyridin-2(1H)-one derivatives as orally eIF4A3-selective inhibitors. ACS Medicinal Chemistry Letters, 8(10), 1077-1082. https://doi.org/10.1021/acsmedchemlett.7b00283
Mo, J., Liang, H., Su, C., Li, P., Chen, J., & Zhang, B. (2021). DDX3X: Structure, physiologic functions and cancer. Molecular Cancer, 20(1), 38. https://doi.org/10.1186/s12943-021-01325-7
Montanaro, L., Mazzini, G., Barbieri, S., Vici, M., Nardi-Pantoli, A., Govoni, M., Donati, G., Trere, D., & Derenzini, M. (2007). Different effects of ribosome biogenesis inhibition on cell proliferation in retinoblastoma protein- and p53-deficient and proficient human osteosarcoma cell lines. Cell Proliferation, 40(4), 532-549. https://doi.org/10.1111/j.1365-2184.2007.00448.x
Montpetit, B., Thomsen, N. D., Helmke, K. J., Seeliger, M. A., Berger, J. M., & Weis, K. (2011). A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature, 472(7342), 238-242. https://doi.org/10.1038/nature09862
Naineni, S. K., Itoua Maiga, R., Cencic, R., Putnam, A. A., Amador, L. A., Rodriguez, A. D., Jankowsky, E., & Pelletier, J. (2020). A comparative study of small molecules targeting eIF4A. RNA, 26(5), 541-549. https://doi.org/10.1261/rna.072884.119
Naineni, S. K., Liang, J., Hull, K., Cencic, R., Zhu, M., Northcote, P., Teesdale-Spittle, P., Romo, D., Nagar, B., & Pelletier, J. (2021). Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine a. Cell Chemistry & Biology, 28(6), 825-834 e826. https://doi.org/10.1016/j.chembiol.2020.12.006
Nakao, S., Nogami, M., Iwatani, M., Imaeda, T., Ito, M., Tanaka, T., Tawada, M., Endo, S., Cary, D. R., Ohori, M., Imaeda, Y., Kawamoto, T., Aparicio, S., Nakanishi, A., & Araki, S. (2020). Identification of a selective DDX3X inhibitor with newly developed quantitative high-throughput RNA helicase assays. Biochemical and Biophysical Research Communications, 523(3), 795-801. https://doi.org/10.1016/j.bbrc.2019.12.094
Ozgur, S., Buchwald, G., Falk, S., Chakrabarti, S., Prabu, J. R., & Conti, E. (2015). The conformational plasticity of eukaryotic RNA-dependent ATPases. The FEBS Journal, 282(5), 850-863. https://doi.org/10.1111/febs.13198
Park, Y., Park, J., Hwang, H. J., Kim, L., Jeong, K., Song, H. K., Rufener, S. C., Muhlemann, O., & Kim, Y. K. (2021). Translation mediated by the nuclear cap-binding complex is confined to the perinuclear region via a CTIF-DDX19B interaction. Nucleic Acids Research, 49(14), 8261-8276. https://doi.org/10.1093/nar/gkab579
Parsyan, A., Svitkin, Y., Shahbazian, D., Gkogkas, C., Lasko, P., Merrick, W. C., & Sonenberg, N. (2011). mRNA helicases: The tacticians of translational control. Nature Reviews. Molecular Cell Biology, 12(4), 235-245. https://doi.org/10.1038/nrm3083
Pastor, F., Kolonias, D., Giangrande, P. H., & Gilboa, E. (2010). Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature, 465(7295), 227-230. https://doi.org/10.1038/nature08999
Pelletier, J., & Sonenberg, N. (2019). The organizing principles of eukaryotic ribosome recruitment. Annual Review of Biochemistry, 88, 307-335. https://doi.org/10.1146/annurev-biochem-013118-111042
Pestov, D. G., Strezoska, Z., & Lau, L. F. (2001). Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: Effects of nucleolar protein Bop1 on G(1)/S transition. Molecular and Cellular Biology, 21(13), 4246-4255. https://doi.org/10.1128/MCB.21.13.4246-4255.2001
Peters, D., Radine, C., Reese, A., Budach, W., Sohn, D., & Janicke, R. U. (2017). The DEAD-box RNA helicase DDX41 is a novel repressor of p21(WAF1/CIP1) mRNA translation. The Journal of Biological Chemistry, 292(20), 8331-8341. https://doi.org/10.1074/jbc.M116.772327
Peters, T. L., Tillotson, J., Yeomans, A. M., Wilmore, S., Lemm, E., Jimenez-Romero, C., Amador, L. A., Li, L., Amin, A. D., Pongtornpipat, P., Zerio, C. J., Ambrose, A. J., Paine-Murrieta, G., Greninger, P., Vega, F., Benes, C. H., Packham, G., Rodriguez, A. D., Chapman, E., & Schatz, J. H. (2018). Target-based screening against eIF4A1 reveals the marine natural product Elatol as a novel inhibitor of translation initiation with in vivo antitumor activity. Clinical Cancer Research, 24(17), 4256-4270. https://doi.org/10.1158/1078-0432.CCR-17-3645
Picco, G., Chen, E. D., Alonso, L. G., Behan, F. M., Goncalves, E., Bignell, G., Matchan, A., Fu, B., Banerjee, R., Anderson, E., Butler, A., Benes, C. H., McDermott, U., Dow, D., Iorio, F., Stronach, E., Yang, F., Yusa, K., Saez-Rodriguez, J., & Garnett, M. J. (2019). Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Nature Communications, 10(1), 2198. https://doi.org/10.1038/s41467-019-09940-1
Polprasert, C., Schulze, I., Sekeres, M. A., Makishima, H., Przychodzen, B., Hosono, N., Singh, J., Padgett, R. A., Gu, X., Phillips, J. G., Clemente, M., Parker, Y., Lindner, D., Dienes, B., Jankowsky, E., Saunthararajah, Y., Du, Y., Oakley, K., Nguyen, N., … Maciejewski, J. P. (2015). Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell, 27(5), 658-670. https://doi.org/10.1016/j.ccell.2015.03.017
Pommier, Y., & Marchand, C. (2011). Interfacial inhibitors: Targeting macromolecular complexes. Nature Reviews. Drug Discovery, 11(1), 25-36. https://doi.org/10.1038/nrd3404
Popp, M. W., & Maquat, L. E. (2015). Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nature Communications, 6, 6632. https://doi.org/10.1038/ncomms7632
Pugh, T. J., Weeraratne, S. D., Archer, T. C., Pomeranz Krummel, D. A., Auclair, D., Bochicchio, J., Carneiro, M. O., Carter, S. L., Cibulskis, K., Erlich, R. L., Greulich, H., Lawrence, M. S., Lennon, N. J., McKenna, A., Meldrim, J., Ramos, A. H., Ross, M. G., Russ, C., Shefler, E., … Cho, Y. J. (2012). Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 488(7409), 106-110. https://doi.org/10.1038/nature11329
Putnam, A. A., & Jankowsky, E. (2013). DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochimica et Biophysica Acta, 1829(8), 884-893. https://doi.org/10.1016/j.bbagrm.2013.02.002
Radi, M., Falchi, F., Garbelli, A., Samuele, A., Bernardo, V., Paolucci, S., Baldanti, F., Schenone, S., Manetti, F., Maga, G., & Botta, M. (2012). Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: Towards the next generation HIV-1 inhibitors. Bioorganic & Medicinal Chemistry Letters, 22(5), 2094-2098. https://doi.org/10.1016/j.bmcl.2011.12.135
Riva, V., Garbelli, A., Brai, A., Casiraghi, F., Fazi, R., Trivisani, C. I., Boccuto, A., Saladini, F., Vicenti, I., Martelli, F., Zazzi, M., Giannecchini, S., Dreassi, E., Botta, M., & Maga, G. (2020). Unique domain for a unique target: Selective inhibitors of host cell DDX3X to fight emerging viruses. Journal of Medicinal Chemistry, 63(17), 9876-9887. https://doi.org/10.1021/acs.jmedchem.0c01039
Robert, F., & Pelletier, J. (2013). Perturbations of RNA helicases in cancer. WIREs RNA, 4(4), 333-349. https://doi.org/10.1002/wrna.1163
Robinson, G., Parker, M., Kranenburg, T. A., Lu, C., Chen, X., Ding, L., Phoenix, T. N., Hedlund, E., Wei, L., Zhu, X., Chalhoub, N., Baker, S. J., Huether, R., Kriwacki, R., Curley, N., Thiruvenkatam, R., Wang, J., Wu, G., Rusch, M., … Gilbertson, R. J. (2012). Novel mutations target distinct subgroups of medulloblastoma. Nature, 488(7409), 43-48. https://doi.org/10.1038/nature11213
Rubbi, C. P., & Milner, J. (2003). Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. The EMBO Journal, 22(22), 6068-6077. https://doi.org/10.1093/emboj/cdg579
Sadlish, H., Galicia-Vazquez, G., Paris, C. G., Aust, T., Bhullar, B., Chang, L., Helliwell, S. B., Hoepfner, D., Knapp, B., Riedl, R., Roggo, S., Schuierer, S., Studer, C., Porco, J. A., Jr., Pelletier, J., & Movva, N. R. (2013). Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chemical Biology, 8(7), 1519-1527. https://doi.org/10.1021/cb400158t
Samal, S. K., Routray, S., Veeramachaneni, G. K., Dash, R., & Botlagunta, M. (2015). Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Scientific Reports, 5, 9982. https://doi.org/10.1038/srep09982
Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., Dimitriadoy, S., Liu, D. L., Kantheti, H. S., Saghafinia, S., Chakravarty, D., Daian, F., Gao, Q., Bailey, M. H., Liang, W. W., Foltz, S. M., Shmulevich, I., Ding, L., Heins, Z., … Schultz, N. (2018). Oncogenic signaling pathways in the cancer genome atlas. Cells, 173(2), 321-337.e310. https://doi.org/10.1016/j.cell.2018.03.035
Schlautmann, L. P., & Gehring, N. H. (2020). A day in the life of the exon junction complex. Biomolecules, 10(6), 866. https://doi.org/10.3390/biom10060866
Schumann, S., Jackson, B. R., Yule, I., Whitehead, S. K., Revill, C., Foster, R., & Whitehouse, A. (2016). Targeting the ATP-dependent formation of herpesvirus ribonucleoprotein particle assembly as an antiviral approach. Nature Microbiology, 2, 16201. https://doi.org/10.1038/nmicrobiol.2016.201
Sen, N. D., Zhou, F., Ingolia, N. T., & Hinnebusch, A. G. (2015). Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Research, 25(8), 1196-1205. https://doi.org/10.1101/gr.191601.115
Senechal, P., Robert, F., Cencic, R., Yanagiya, A., Chu, J., Sonenberg, N., Paquet, M., & Pelletier, J. (2021). Assessing eukaryotic initiation factor 4F subunit essentiality by CRISPR-induced gene ablation in the mouse. Cellular and Molecular Life Sciences, 78, 6709-6719. https://doi.org/10.1007/s00018-021-03940-5
Shen, L., & Pelletier, J. (2020). Selective targeting of the DEAD-box RNA helicase eukaryotic initiation factor (eIF) 4A by natural products. Natural Product Reports, 37(5), 609-616. https://doi.org/10.1039/c9np00052f
Sherr, C. J., & Roberts, J. M. (1999). CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes & Development, 13(12), 1501-1512. https://doi.org/10.1101/gad.13.12.1501
Snijders Blok, L., Madsen, E., Juusola, J., Gilissen, C., Baralle, D., Reijnders, M. R., Venselaar, H., Helsmoortel, C., Cho, M. T., Hoischen, A., Vissers, L. E., Koemans, T. S., Wissink-Lindhout, W., Eichler, E. E., Romano, C., Van Esch, H., Stumpel, C., Vreeburg, M., Smeets, E., … Kleefstra, T. (2015). Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on Wnt signaling. American Journal of Human Genetics, 97(2), 343-352. https://doi.org/10.1016/j.ajhg.2015.07.004
Sonenberg, N. (1981). ATP/mg++-dependent cross-linking of cap binding proteins to the 5′ end of eukaryotic mRNA. Nucleic Acids Research, 9(7), 1643-1656. https://doi.org/10.1093/nar/9.7.1643
Sperling, A. S., Gibson, C. J., & Ebert, B. L. (2017). The genetics of myelodysplastic syndrome: From clonal haematopoiesis to secondary leukaemia. Nature Reviews. Cancer, 17(1), 5-19. https://doi.org/10.1038/nrc.2016.112
Steinberger, J., Shen, L., Kiniry, S. J., Naineni, S. K., Cencic, R., Amiri, M., Aboushawareb, S. A. E., Chu, J., Maiga, R. I., Yachnin, B. J., Robert, F., Sonenberg, N., Baranov, P. V., & Pelletier, J. (2020). Identification and characterization of hippuristanol-resistant mutants reveals eIF4A1 dependencies within mRNA 5′ leader regions. Nucleic Acids Research, 48(17), 9521-9537. https://doi.org/10.1093/nar/gkaa662
Stransky, N., Egloff, A. M., Tward, A. D., Kostic, A. D., Cibulskis, K., Sivachenko, A., Kryukov, G. V., Lawrence, M. S., Sougnez, C., McKenna, A., Shefler, E., Ramos, A. H., Stojanov, P., Carter, S. L., Voet, D., Cortes, M. L., Auclair, D., Berger, M. F., Saksena, G., … Grandis, J. R. (2011). The mutational landscape of head and neck squamous cell carcinoma. Science, 333(6046), 1157-1160. https://doi.org/10.1126/science.1208130
Su, R., Fan, L. H., Cao, C., Wang, L., Du, Z., Cai, Z., Ouyang, Y. C., Wang, Y., Zhou, Q., Wu, L., Zhang, N., Zhu, X., Lei, W. L., Zhao, H., Tian, Y., He, S., Wong, C. C. L., Sun, Q. Y., & Xue, Y. (2021). Global profiling of RNA-binding protein target sites by LACE-seq. Nature Cell Biology, 23(6), 664-675. https://doi.org/10.1038/s41556-021-00696-9
Sulic, S., Panic, L., Barkic, M., Mercep, M., Uzelac, M., & Volarevic, S. (2005). Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes & Development, 19(24), 3070-3082. https://doi.org/10.1101/gad.359305
Sun, Y., Atas, E., Lindqvist, L. M., Sonenberg, N., Pelletier, J., & Meller, A. (2014). Single-molecule kinetics of the eukaryotic initiation factor 4AI upon RNA unwinding. Structure, 22(7), 941-948. https://doi.org/10.1016/j.str.2014.04.014
Tantravedi, S., Vesuna, F., Winnard, P. T., Jr., Martin, A., Lim, M., Eberhart, C. G., Berlinicke, C., Raabe, E., van Diest, P. J., & Raman, V. (2019). Targeting DDX3 in Medulloblastoma using the small molecule inhibitor RK-33. Translational Oncology, 12(1), 96-105. https://doi.org/10.1016/j.tranon.2018.09.002
Tauber, D., Tauber, G., Khong, A., Van Treeck, B., Pelletier, J., & Parker, R. (2020). Modulation of RNA condensation by the DEAD-box protein eIF4A. Cells, 180(3), 411-426 e416. https://doi.org/10.1016/j.cell.2019.12.031
Tentler, J. J., Lang, J., Capasso, A., Kim, D. J., Benaim, E., Lee, Y. B., Eisen, A., Bagby, S. M., Hartman, S. J., Yacob, B. W., Gittleman, B., Pitts, T. M., Pelanda, R., Eckhardt, S. G., & Diamond, J. R. (2020). RX-5902, a novel beta-catenin modulator, potentiates the efficacy of immune checkpoint inhibitors in preclinical models of triple-negative breast cancer. BMC Cancer, 20(1), 1063. https://doi.org/10.1186/s12885-020-07500-1
Tillotson, J., Kedzior, M., Guimaraes, L., Ross, A. B., Peters, T. L., Ambrose, A. J., Schmidlin, C. J., Zhang, D. D., Costa-Lotufo, L. V., Rodriguez, A. D., Schatz, J. H., & Chapman, E. (2017). ATP-competitive, marine derived natural products that target the DEAD box helicase, eIF4A. Bioorganic & Medicinal Chemistry Letters, 27(17), 4082-4085. https://doi.org/10.1016/j.bmcl.2017.07.045
Vanni, I., Tanda, E. T., Dalmasso, B., Pastorino, L., Andreotti, V., Bruno, W., Boutros, A., Spagnolo, F., & Ghiorzo, P. (2020). Non-BRAF mutant melanoma: Molecular features and Therapeutical implications. Frontiers in Molecular Biosciences, 7, 172. https://doi.org/10.3389/fmolb.2020.00172
Venkataramanan, S., Gadek, M., Calviello, L., Wilkins, K., & Floor, S. N. (2021). DDX3X and DDX3Y are redundant in protein synthesis. RNA, 27(12), 1577-1588. https://doi.org/10.1261/rna.078926.121
Wagner, M., Rid, R., Maier, C. J., Maier, R. H., Laimer, M., Hintner, H., Bauer, J. W., & Onder, K. (2012). DDX5 is a multifunctional co-activator of steroid hormone receptors. Molecular and Cellular Endocrinology, 361(1-2), 80-91. https://doi.org/10.1016/j.mce.2012.03.014
Wang, L., Lawrence, M. S., Wan, Y., Stojanov, P., Sougnez, C., Stevenson, K., Werner, L., Sivachenko, A., DeLuca, D. S., Zhang, L., Zhang, W., Vartanov, A. R., Fernandes, S. M., Goldstein, N. R., Folco, E. G., Cibulskis, K., Tesar, B., Sievers, Q. L., Shefler, E., … Wu, C. J. (2011). SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. The New England Journal of Medicine, 365(26), 2497-2506. https://doi.org/10.1056/NEJMoa1109016
Weirich, C. S., Erzberger, J. P., Flick, J. S., Berger, J. M., Thorner, J., & Weis, K. (2006). Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature Cell Biology, 8(7), 668-676. https://doi.org/10.1038/ncb1424
Wilky, B. A., Kim, C., McCarty, G., Montgomery, E. A., Kammers, K., DeVine, L. R., Cole, R. N., Raman, V., & Loeb, D. M. (2016). RNA helicase DDX3: A novel therapeutic target in Ewing sarcoma. Oncogene, 35(20), 2574-2583. https://doi.org/10.1038/onc.2015.336
Wilson, B. J., Bates, G. J., Nicol, S. M., Gregory, D. J., Perkins, N. D., & Fuller-Pace, F. V. (2004). The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Molecular Biology, 5, 11. https://doi.org/10.1186/1471-2199-5-11
Xie, M., Vesuna, F., Botlagunta, M., Bol, G. M., Irving, A., Bergman, Y., Hosmane, R. S., Kato, Y., Winnard, P. T., Jr., & Raman, V. (2015). NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA helicase DDX3. Oncotarget, 6(30), 29901-29913. https://doi.org/10.18632/oncotarget.4898
Xie, M., Vesuna, F., Tantravedi, S., Bol, G. M., Heerma van Voss, M. R., Nugent, K., Malek, R., Gabrielson, K., van Diest, P. J., Tran, P. T., & Raman, V. (2016). RK-33 Radiosensitizes prostate cancer cells by blocking the RNA helicase DDX3. Cancer Research, 76(21), 6340-6350. https://doi.org/10.1158/0008-5472.CAN-16-0440
Xing, Z., Ma, W. K., & Tran, E. J. (2019). The DDX5/Dbp2 subfamily of DEAD-box RNA helicases. WIREs RNA, 10(2), e1519. https://doi.org/10.1002/wrna.1519
Yang, H. S., Jansen, A. P., Komar, A. A., Zheng, X., Merrick, W. C., Costes, S., Lockett, S. J., Sonenberg, N., & Colburn, N. H. (2003). The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Molecular and Cellular Biology, 23(1), 26-37. https://doi.org/10.1128/MCB.23.1.26-37.2003
Yang, L., Lin, C., & Liu, Z. R. (2006). P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cells, 127(1), 139-155. https://doi.org/10.1016/j.cell.2006.08.036
Yang, S. N. Y., Atkinson, S. C., Audsley, M. D., Heaton, S. M., Jans, D. A., & Borg, N. A. (2020). RK-33 is a broad-Spectrum antiviral agent that targets DEAD-box RNA helicase DDX3X. Cells, 9(1), 170. https://doi.org/10.3390/cells9010170
Yassin, E. R., Abdul-Nabi, A. M., Takeda, A., & Yaseen, N. R. (2010). Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: Role of a conserved helicase motif. Leukemia, 24(5), 1001-1011. https://doi.org/10.1038/leu.2010.42
Yedavalli, V. S., Zhang, N., Cai, H., Zhang, P., Starost, M. F., Hosmane, R. S., & Jeang, K. T. (2008). Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. Journal of Medicinal Chemistry, 51(16), 5043-5051. https://doi.org/10.1021/jm800332m
Yoder-Hill, J., Pause, A., Sonenberg, N., & Merrick, W. C. (1993). The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A. The Journal of Biological Chemistry, 268(8), 5566-5573.
Yoneyama-Hirozane, M., Kondo, M., Matsumoto, S. I., Morikawa-Oki, A., Morishita, D., Nakanishi, A., Kawamoto, T., & Nakayama, M. (2017). High-throughput screening to identify inhibitors of DEAD box helicase DDX41. SLAS Discovery, 22(9), 1084-1092. https://doi.org/10.1177/2472555217705952
Yourik, P., Aitken, C. E., Zhou, F., Gupta, N., Hinnebusch, A. G., & Lorsch, J. R. (2017). Yeast eIF4A enhances recruitment of mRNAs regardless of their structural complexity. eLife, 6, e31476. https://doi.org/10.7554/eLife.31476
Yun, S. J., Kim, H., Jung, S. H., Kim, J. H., Ryu, J. E., Singh, N. J., Jeon, J., Han, J. K., Kim, C. H., Kim, S., Jang, S. K., & Kim, W. J. (2018). The mechanistic insight of a specific interaction between 15d-prostaglandin-J2 and eIF4A suggests an evolutionary conserved role across species. Biology Open, 7(11), bio035402. https://doi.org/10.1242/bio.035402
Zerio, C. J., Cunningham, T. A., Tulino, A. S., Alimusa, E. A., Buckley, T. M., Moore, K. T., Dodson, M., Wilson, N. C., Ambrose, A. J., Shi, T., Sivinski, J., Essegian, D. J., Zhang, D. D., Schurer, S. C., Schatz, J. H., & Chapman, E. (2021). Discovery of an eIF4A inhibitor with a novel mechanism of action. Journal of Medicinal Chemistry, 64(21), 15727-15746. https://doi.org/10.1021/acs.jmedchem.1c01014
Zhang, H., Wu, Z., Lu, J. Y., Huang, B., Zhou, H., Xie, W., Wang, J., & Shen, X. (2020). DEAD-box helicase 18 counteracts PRC2 to safeguard ribosomal DNA in pluripotency regulation. Cell Reports, 30(1), 81-97.e87. https://doi.org/10.1016/j.celrep.2019.12.021
Zhang, Y., Kwok-Shing Ng, P., Kucherlapati, M., Chen, F., Liu, Y., Tsang, Y. H., de Velasco, G., Jeong, K. J., Akbani, R., Hadjipanayis, A., Pantazi, A., Bristow, C. A., Lee, E., Mahadeshwar, H. S., Tang, J., Zhang, J., Yang, L., Seth, S., Lee, S., … Creighton, C. J. (2017). A pan-cancer Proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell, 31(6), 820-832 e823. https://doi.org/10.1016/j.ccell.2017.04.013
Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., & Liu, Y. J. (2011). The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature Immunology, 12(10), 959-965. https://doi.org/10.1038/ni.2091

Auteurs

Sai Kiran Naineni (SK)

Department of Biochemistry, McGill University, Montreal, Quebec, Canada.

Francis Robert (F)

Department of Biochemistry, McGill University, Montreal, Quebec, Canada.

Bhushan Nagar (B)

Department of Biochemistry, McGill University, Montreal, Quebec, Canada.

Jerry Pelletier (J)

Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Department of Oncology, McGill University, Montreal, Quebec, Canada.
Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH