Novel immunotherapies in multiple myeloma.
Chimeric antigen receptor
Immune checkpoint inhibitor
Immunotherapy
Multiple myeloma
Vaccine
Journal
International journal of hematology
ISSN: 1865-3774
Titre abrégé: Int J Hematol
Pays: Japan
ID NLM: 9111627
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
received:
13
04
2022
accepted:
19
04
2022
revised:
18
04
2022
pubmed:
19
5
2022
medline:
7
6
2022
entrez:
18
5
2022
Statut:
ppublish
Résumé
For a substantial period, options for the treatment of multiple myeloma (MM) were limited; however, the advent of novel therapies into clinical practice in the 1990s resulted in dramatic changes in the prognosis of the disease. Subsequently, new proteasome inhibitors and immunomodulators with innovations in efficacy and toxicity were introduced; yet there remains a spectrum of patients with poor outcomes with current treatment strategies. One of the causes of disease progression in MM is the loss of the ability of the dysfunctional immune environment to control virulent cell clones. In recent years, therapies to overcome the immunosuppressive tumor microenvironment and activate the host immune system have shown promise in MM, especially in relapsed and refractory disease. Clinical use of this approach has been approved for several immunotherapies, and a number of studies are currently underway in clinical trials. This review outlines three of the newest and most promising approaches being investigated to enhance the immune system against MM: (1) overcoming immunosuppression with checkpoint inhibitors, (2) boosting immunity against tumors with vaccines, and (3) enhancing immune effectors with adoptive cell therapy. Information on the latest clinical trials in each class will be provided, and further developments will be discussed.
Identifiants
pubmed: 35583724
doi: 10.1007/s12185-022-03365-1
pii: 10.1007/s12185-022-03365-1
doi:
Substances chimiques
Immunologic Factors
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
799-810Informations de copyright
© 2022. Japanese Society of Hematology.
Références
Dimopoulos MA, Richardson P, Lonial S. Treatment options for patients with heavily pretreated relapsed and refractory multiple myeloma. Clin Lymphoma Myeloma Leukemia. 2022. https://doi.org/10.1007/s12185-020-02828-7 .
doi: 10.1007/s12185-020-02828-7
Takamatsu H. Clinical value of measurable residual disease testing for multiple myeloma and implementation in Japan. Int J Hematol. 2020;111(4):519–29.
pubmed: 32034671
doi: 10.1007/s12185-020-02828-7
Maclachlan KH, Came N, Diamond B, Roshal M, Ho C, Thoren K, et al. Minimal residual disease in multiple myeloma: defining the role of next generation sequencing and flow cytometry in routine diagnostic use. Pathology. 2021;53(3):385–99.
pubmed: 33674146
doi: 10.1016/j.pathol.2021.02.003
Landgren O, Kyle RA, Rajkumar SV. From myeloma precursor disease to multiple myeloma: new diagnostic concepts and opportunities for early intervention. Clin Cancer Res Official J Am Assoc Cancer Res. 2011;17(6):1243–52.
doi: 10.1158/1078-0432.CCR-10-1822
Mikulasova A, Wardell CP, Murison A, Boyle EM, Jackson GH, Smetana J, et al. The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma. Haematologica. 2017;102(9):1617–25.
pubmed: 28550183
pmcid: 5685224
doi: 10.3324/haematol.2017.163766
Kyle RA, Larson DR, Therneau TM, Dispenzieri A, Kumar S, Cerhan JR, et al. Long-term follow-up of monoclonal gammopathy of undetermined significance. N Engl J Med. 2018;378(3):241–9.
pubmed: 29342381
pmcid: 5852672
doi: 10.1056/NEJMoa1709974
Uckun FM. Overcoming the immunosuppressive tumor microenvironment in multiple myeloma. Cancers. 2021;13(9):2018.
pubmed: 33922005
pmcid: 8122391
doi: 10.3390/cancers13092018
Rawstron AC, Davies FE, Owen RG, English A, Pratt G, Child JA, et al. B-lymphocyte suppression in multiple myeloma is a reversible phenomenon specific to normal B-cell progenitors and plasma cell precursors. Brit J Haematol. 1998;100(1):176–83.
doi: 10.1046/j.1365-2141.1998.00525.x
Koike M, Sekigawa I, Okada M, Matsumoto M, Iida N, Hashimoto H, et al. Relationship between CD4+/CD8+ T cell ratio and T cell activation in multiple myeloma: reference to IL-16. Leukemia Res. 2002;26(8):705–11.
doi: 10.1016/S0145-2126(01)00192-8
Ogawara H, Handa H, Yamazaki T, Toda T, Yoshida K, Nishimoto N, et al. High Th1/Th2 ratio in patients with multiple myeloma. Leukemia Res. 2005;29(2):135–40.
doi: 10.1016/j.leukres.2004.06.003
Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, et al. In vivo peripheral expansion of naive CD4+CD25highFoxP3+ regulatory T cells in patients with multiple myeloma. Blood. 2006;107(10):3940–9.
pubmed: 16410445
doi: 10.1182/blood-2005-09-3671
Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood. 2002;100(1):230–7.
pubmed: 12070032
doi: 10.1182/blood.V100.1.230
Brimnes MK, Svane IM, Johnsen HE. Impaired functionality and phenotypic profile of dendritic cells from patients with multiple myeloma. Clin Exp Immunol. 2006;144(1):76–84.
pubmed: 16542368
pmcid: 1809645
doi: 10.1111/j.1365-2249.2006.03037.x
Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, et al. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol. 2013;190(7):3815–23.
pubmed: 23460744
doi: 10.4049/jimmunol.1203373
Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol. 2018;234(2):1313–25.
pubmed: 30191996
doi: 10.1002/jcp.27172
Tamura H, Ishibashi M, Sunakawa-Kii M, Inokuchi K. PD-L1–PD-1 pathway in the pathophysiology of multiple myeloma. Cancers. 2020;12(4):924.
pmcid: 7226506
doi: 10.3390/cancers12040924
Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a Phase Ib Study. J Clin Oncol. 2016;34(23):2698–704.
pubmed: 27269947
pmcid: 5019749
doi: 10.1200/JCO.2015.65.9789
Ribrag V, Avigan DE, Green DJ, Wise-Draper T, Posada JG, Vij R, et al. Phase 1b trial of pembrolizumab monotherapy for relapsed/refractory multiple myeloma: KEYNOTE-013. Brit J Haematol. 2019;186(3):e41–4.
Görgün G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE, et al. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res. 2015;21(20):4607–18.
pubmed: 25979485
pmcid: 4609232
doi: 10.1158/1078-0432.CCR-15-0200
Mateos MV, Blacklock H, Schjesvold F, Oriol A, Simpson D, George A, et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e459–69.
pubmed: 31327687
doi: 10.1016/S2352-3026(19)30110-3
Usmani SZ, Schjesvold F, Oriol A, Karlin L, Cavo M, Rifkin RM, et al. Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e448–58.
pubmed: 31327689
doi: 10.1016/S2352-3026(19)30109-7
Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91.
pubmed: 26371282
pmcid: 6267867
doi: 10.1093/annonc/mdv383
Lesokhin AM, Chung DJ, Cho HJ, Shohara L, Schwarzenberger P, Ricciardi T, et al. Phase 1 study to evaluate the safety and efficacy of immunotherapy with tremelimumab and durvalumab in multiple myeloma patients receiving high dose chemotherapy and autologous stem cell transplant (HDT/ASCT) + peripheral blood lymphocyte (PBL) reinfusion. J Clin Oncol. 2017;35(15):TPS8051.
doi: 10.1200/JCO.2017.35.15_suppl.TPS8051
Skarbnik AP, Donato ML, Feinman R, Rowley SD, Vesole DH, Goy AH, et al. Safety and efficacy of consolidation therapy with ipilimumab plus nivolumab after autologous stem cell transplantation. Transplant Cell Ther. 2021;27(5):391–403.
pubmed: 33965177
doi: 10.1016/j.jtct.2020.12.026
Benson DM, Cohen AD, Jagannath S, Munshi NC, Spitzer G, Hofmeister CC, et al. A Phase I trial of the anti-KIR antibody iph2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin Cancer Res. 2015;21(18):4055–61.
pubmed: 25999435
pmcid: 4573800
doi: 10.1158/1078-0432.CCR-15-0304
Korde N, Carlsten M, Lee MJ, Minter A, Tan E, Kwok M, et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica. 2014;99(6):e81–3.
pubmed: 24658821
pmcid: 4040899
doi: 10.3324/haematol.2013.103085
Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity. 2020;52(5):742–52.
pubmed: 32433947
pmcid: 7340539
doi: 10.1016/j.immuni.2020.04.011
Sun J, Muz B, Alhallak K, Markovic M, Gurley S, Wang Z, et al. Targeting CD47 as a novel immunotherapy for multiple myeloma. Cancers. 2020;12(2):305.
pmcid: 7072283
doi: 10.3390/cancers12020305
Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, et al. Development of AO-176, a next-generation humanized anti-cd47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther. 2020;19(3):835–46.
pubmed: 31879362
doi: 10.1158/1535-7163.MCT-19-1079
Andrejeva G, Capoccia BJ, Hiebsch RR, Donio MJ, Darwech IM, Puro RJ, et al. Novel SIRPα antibodies that induce single-agent phagocytosis of tumor cells while preserving T cells. J Immunol. 2021;206(4):712–21.
pubmed: 33431660
pmcid: 7851740
doi: 10.4049/jimmunol.2001019
Patnaik A, Spreafico A, Paterson AM, Peluso M, Chung JK, Bowers B, et al. Results of a first-in-human phase I study of SRF231, a fully human, high-affinity anti-CD47 antibody. J Clin Oncol. 2020;38(15_suppl):3064.
doi: 10.1200/JCO.2020.38.15_suppl.3064
Hansson L, Abdalla AO, Moshfegh A, Choudhury A, Rabbani H, Nilsson B, et al. Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin Cancer Res. 2007;13(5):1503–10.
pubmed: 17332295
doi: 10.1158/1078-0432.CCR-06-1603
Ocadlikova D, Kryukov F, Mollova K, Kovarova L, Buresova I, Matejkova E, et al. Generation of myeloma-specific T cells using dendritic cells loaded with MUC1- and hTERT- drived nonapeptides or myeloma cell apoptotic bodies. Neoplasma. 2010;57(5):455–64.
pubmed: 20568900
doi: 10.4149/neo_2010_05_455
Li R, Qian J, Zhang W, Fu W, Du J, Jiang H, et al. Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma. Brit J Haematol. 2014;166(5):690–701.
doi: 10.1111/bjh.12943
Lim SH, Wang Z, Chiriva-Internati M, Xue Y. Sperm protein 17 is a novel cancer-testis antigen in multiple myeloma. Blood. 2001;97(5):1508–10.
pubmed: 11222401
doi: 10.1182/blood.V97.5.1508
Qian J, Xie J, Hong S, Yang J, Zhang L, Han X, et al. Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma. Blood. 2007;110(5):1587–94.
pubmed: 17515399
pmcid: 1975842
doi: 10.1182/blood-2007-03-082529
Anderson LD, Cook DR, Yamamoto TN, Berger C, Maloney DG, Riddell SR. Identification of MAGE-C1 (CT-7) epitopes for T-cell therapy of multiple myeloma. Cancer Immunol Immunother. 2011;60(7):985–97.
pubmed: 21461886
pmcid: 3183483
doi: 10.1007/s00262-011-1009-3
Batchu RB, Moreno AM, Szmania SM, Bennett G, Spagnoli GC, Ponnazhagan S, et al. Protein transduction of dendritic cells for NY-ESO-1-based immunotherapy of myeloma. Cancer Res. 2005;65(21):10041–9.
pubmed: 16267030
doi: 10.1158/0008-5472.CAN-05-1383
Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci. 1993;90(8):3539–43.
pubmed: 8097319
pmcid: 46336
doi: 10.1073/pnas.90.8.3539
Nemunaitis J. Vaccines in cancer: GVAX
pubmed: 16026242
doi: 10.1586/14760584.4.3.259
Biavati L, Huff CA, Ferguson A, Sidorski A, Stevens MA, Rudraraju L, et al. An allogeneic multiple myeloma GM-CSF-secreting vaccine with lenalidomide induces long-term immunity and durable clinical responses in patients in near complete remission. Clin Cancer Res Official J Am Assoc Cancer Res. 2021;27(24):6696–708.
doi: 10.1158/1078-0432.CCR-21-1916
Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res. 2013;19(13):3640–8.
pubmed: 23685836
pmcid: 3755905
doi: 10.1158/1078-0432.CCR-13-0282
Rosenberg SA. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. New Eng J Med. 1988;319(25):1676–80.
pubmed: 3264384
doi: 10.1056/NEJM198812223192527
Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. Jnci J Natl Cancer Inst. 1994;86(15):1159–66.
pubmed: 8028037
doi: 10.1093/jnci/86.15.1159
Davila ML, Sadelain M. Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. 2016;104(1):6–17.
pubmed: 27262700
pmcid: 5512169
doi: 10.1007/s12185-016-2039-6
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44.
pubmed: 29226797
pmcid: 5882485
doi: 10.1056/NEJMoa1707447
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2018;380(1):45–56.
pubmed: 30501490
doi: 10.1056/NEJMoa1804980
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.
pubmed: 29385370
pmcid: 5996391
doi: 10.1056/NEJMoa1709866
Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet (London, England). 2015;385(9967):517–28.
doi: 10.1016/S0140-6736(14)61403-3
Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38.
pubmed: 23515080
pmcid: 3742551
doi: 10.1126/scitranslmed.3005930
Turtle CJ, Hanafi LAA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Investig. 2016;126(6):2123–38.
pubmed: 27111235
pmcid: 4887159
doi: 10.1172/JCI85309
Locke FL, Miklos DB, Jacobson CA, Perales MA, Kersten MJ, Oluwole OO, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. New Engl J Med. 2021.
Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013;19(8):2048–60.
pubmed: 23344265
pmcid: 3630268
doi: 10.1158/1078-0432.CCR-12-2422
Bossen C, Schneider P. BAFF, APRIL and their receptors: structure, function and signaling. Semin Immunol. 2006;18(5):263–75.
pubmed: 16914324
doi: 10.1016/j.smim.2006.04.006
Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. New Eng J Med. 2019;380(18):1726–37.
pubmed: 31042825
doi: 10.1056/NEJMoa1817226
Munshi NC, Anderson LD Jr, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. New Engl J Med. 2021;384(8):705–16.
pubmed: 33626253
doi: 10.1056/NEJMoa2024850
Zhao WH, Liu J, Wang BY, Chen YX, Cao XM, Yang Y, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018;11(1):141.
pubmed: 30572922
pmcid: 6302465
doi: 10.1186/s13045-018-0681-6
Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398(10297):314–24.
pubmed: 34175021
doi: 10.1016/S0140-6736(21)00933-8
Mateos MV, Weisel K, Stefano VD, Goldschmidt H, Delforge M, Mohty M, et al. LocoMMotion: a prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma. Leukemia. 2022;1–6.
Mateos MV, Weisel K, Martin T, Berdeja JG, Jakubowiak A, Stewart AK, et al. Ciltacabtagene autoleucel for triple-class exposed multiple myeloma: adjusted comparisons of CARTITUDE-1 patient outcomes versus therapies from real-world clinical practice from the LocoMMotion Prospective Study. Blood. 2021;138(Supplement 1):550–550.
doi: 10.1182/blood-2021-146200
Cohen YC, Cohen AD, Delforge M, Hillengass J, Goldschmidt H, Weisel K, et al. Efficacy and safety of ciltacabtagene autoleucel (Cilta-cel), a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapy, in lenalidomide-refractory patients with progressive multiple myeloma after 1–3 prior lines of therapy: updated results from CARTITUDE-2. Blood. 2021;138(Supplement 1):3866–3866.
doi: 10.1182/blood-2021-146072
Cordoba S, Onuoha S, Thomas S, Pignataro DS, Hough R, Ghorashian S, et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 2021;27(10):1797–805.
pubmed: 34642489
pmcid: 8516648
doi: 10.1038/s41591-021-01497-1
Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282–95.
pubmed: 26516065
pmcid: 4670800
doi: 10.1158/2159-8290.CD-15-1020
Gardner R, Wu D, Cherian S, Fang M, Hanafi LAA, Finney O, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–10.
pubmed: 26907630
pmcid: 4874221
doi: 10.1182/blood-2015-08-665547
Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018;24(10):1499–503.
pubmed: 30275568
pmcid: 6511988
doi: 10.1038/s41591-018-0201-9
Fischer J, Paret C, Malki K, Alt F, Wingerter A, Neu MA, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-all patients at initial diagnosis. J Immunother (Hagerstown, Md : 1997). 2017;40(5):187–95.
pmcid: 5424577
Paiva B, Puig N, Cedena M, de Jong B, Ruiz Y, Rapado I, et al. Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia. 2017;31(2):382–92.
pubmed: 27479184
doi: 10.1038/leu.2016.211
Wang Y, Cao J, Gu W, Shi M, Lan J, Yan Z, et al. Long-term follow-up of combination of B-cell maturation antigen and CD19 chimeric antigen receptor T cells in multiple myeloma. J Clin Oncol. 2022. https://doi.org/10.1200/JCO2101676 .
doi: 10.1200/JCO2101676
pubmed: 35580297
pmcid: 9113208
Jiang H, Dong B, Gao L, Liu L, Ge J, He A, et al. Clinical results of a multicenter study of the first-in-human dual BCMA and CD19 targeted novel platform fast CAR-T cell therapy for patients with relapsed/refractory multiple myeloma. Blood. 2020;136(Supplement 1):25–6.
Lee L, Draper B, Chaplin N, Philip B, Chin M, Galas-Filipowicz D, et al. An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma. Blood. 2018;131(7):746–58.
pubmed: 29284597
pmcid: 5922275
doi: 10.1182/blood-2017-05-781351
Schmidts A, Ormhøj M, Choi BD, Taylor AO, Bouffard AA, Scarfò I, et al. Rational design of a trimeric APRIL-based CAR-binding domain enables efficient targeting of multiple myeloma. Blood Adv. 2019;3(21):3248–60.
pubmed: 31698455
pmcid: 6855119
doi: 10.1182/bloodadvances.2019000703
Laurent SA, Hoffmann FS, Kuhn PH, Cheng Q, Chu Y, Schmidt-Supprian M, et al. γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat Commun. 2015;6(1):7333.
pubmed: 26065893
doi: 10.1038/ncomms8333
Cowan AJ, Pont M, Sather BD, Turtle CJ, Till BG, Libby E, et al. Safety and efficacy of fully human BCMA CAR T cells in combination with a gamma secretase inhibitor to increase BCMA surface expression in patients with relapsed or refractory multiple myeloma. Blood. 2021;138(Supplement 1):551–551.
doi: 10.1182/blood-2021-154170
Li C, Mei H, Hu Y, Guo T, Liu L, Jiang H, et al. A Bispecific CAR-T cell therapy targeting Bcma and CD38 for relapsed/refractory multiple myeloma: updated results from a phase 1 Dose-Climbing Trial. Blood. 2019;134(Supplement_1):930–930.
doi: 10.1182/blood-2019-130340
Zah E, Nam E, Bhuvan V, Tran U, Ji BY, Gosliner SB, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat Commun. 2020;11(1):2283.
pubmed: 32385241
pmcid: 7210316
doi: 10.1038/s41467-020-16160-5
Sun C. Safety and efficacy of targeting CD138 with a chimeric antigen receptor for the treatment of multiple myeloma.
Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, et al. Phase 1 trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res. 2018;7(1):100–12.
pubmed: 30396908
pmcid: 7814996
doi: 10.1158/2326-6066.CIR-18-0307
Ramos CA, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, et al. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J Clin Investig. 2016;126(7):2588–96.
pubmed: 27270177
pmcid: 4922690
doi: 10.1172/JCI86000
Zannetti BA, Faini AC, Massari E, Geuna M, Maffini E, Poletti G, et al. Novel insights in anti-CD38 therapy based on CD38-receptor expression and function: the multiple myeloma model. Cells. 2020;9(12):2666.
pmcid: 7764337
doi: 10.3390/cells9122666
Campbell KS, Cohen AD, Pazina T. Mechanisms of NK Cell activation and clinical activity of the therapeutic SLAMF7 antibody, elotuzumab in multiple myeloma. Front Immunol. 2018;9:2551.
pubmed: 30455698
pmcid: 6230619
doi: 10.3389/fimmu.2018.02551
Goldsmith R, Cornax I, Ma JY, Yao X, Peng P, Carreira V. Normal human tissue expression of G-protein coupled receptor 5D (GPRC5D), a promising novel target for multiple myeloma, is restricted to plasma cells and hard keratinized tissues. Clin Lymphoma Myeloma Leukemia. 2021;21:S91.
doi: 10.1016/S2152-2650(21)02229-1
Smith EL, Harrington K, Staehr M, Masakayan R, Jones J, Long TJ, et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med. 2019. https://doi.org/10.1182/blood-2010-06-292243 .
doi: 10.1182/blood-2010-06-292243
pubmed: 31801883
pmcid: 7238624
Neri P, Ren L, Azab AK, Brentnall M, Gratton K, Klimowicz AC, et al. Integrin β7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood. 2011;117(23):6202–13.
pubmed: 21474670
pmcid: 3122944
doi: 10.1182/blood-2010-06-292243
Hosen N, Matsunaga Y, Hasegawa K, Matsuno H, Nakamura Y, Makita M, et al. The activated conformation of integrin β7 is a novel multiple myeloma-specific target for CAR T cell therapy. Nat Med. 2017;23(12):1436–43.
pubmed: 29106400
doi: 10.1038/nm.4431
Jain T, Bar M, Kansagra AJ, Chong EA, Hashmi SK, Neelapu SS, et al. Utilization of chimeric antigen receptor (CAR) T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American society for transplantation and cellular therapy. Biol Blood Marrow Transplant. 2019;25(12):2305–21.
pubmed: 31446199
doi: 10.1016/j.bbmt.2019.08.015
Yakoub-Agha I, Chabannon C, Bader P, Basak GW, Bonig H, Ciceri F, et al. Management of adults and children undergoing CAR t-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2019;105(2):297–316. https://doi.org/10.3324/haematol.2019.229781 .
doi: 10.3324/haematol.2019.229781
Gagelmann N, Ayuk F, Atanackovic D, Kröger N. B cell maturation antigen-specific chimeric antigen receptor T cells for relapsed or refractory multiple myeloma: a meta-analysis. Eur J Haematol. 2020;104(4):318–27.
pubmed: 31883150
doi: 10.1111/ejh.13380
Kansagra AJ, Frey NV, Bar M, Laetsch TW, Carpenter PA, Savani BN, et al. Clinical utilization of chimeric antigen receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)-an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplant. 2019;54(11):1868–80.
pubmed: 31092900
pmcid: 8268756
doi: 10.1038/s41409-019-0451-2
Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62.
pubmed: 28925994
doi: 10.1038/nrclinonc.2017.148
Oekelen OV, Aleman A, Upadhyaya B, Schnakenberg S, Madduri D, Gavane S, et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nat Med. 2021;27(12):2099–103.
pubmed: 34893771
doi: 10.1038/s41591-021-01564-7
Schumacher TN, Scheper W, Kvistborg P. Cancer neoantigens. Annu Rev Immunol. 2018;37(1):1–28.
Coulie PG, den Eynde BJV, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135–46.
pubmed: 24457417
doi: 10.1038/nrc3670
van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P, et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood. 2005;105(10):3939–44.
pubmed: 15671442
pmcid: 1895070
doi: 10.1182/blood-2004-09-3707
Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21. https://doi.org/10.1038/nm.3910 .
doi: 10.1038/nm.3910
pubmed: 26193344
pmcid: 4529359
Stadtmauer EA, Faitg TH, Lowther DE, Badros AZ, Chagin K, Dengel K, et al. Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for myeloma. Blood Adv. 2019;3(13):2022–34.
pubmed: 31289029
pmcid: 6616263
doi: 10.1182/bloodadvances.2019000194
Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):eaba7365.
pubmed: 32029687
doi: 10.1126/science.aba7365
Jahn L, Hombrink P, Hagedoorn RS, Kester MG, van der Steen DM, Rodriguez T, et al. TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood. 2017;129(10):1284–95.
pubmed: 28053195
doi: 10.1182/blood-2016-09-737536
Meeuwsen MH, Wouters AK, Jahn L, Hagedoorn RS, Kester MGD, Remst DFG, et al. A broad and systematic approach to identify B cell malignancy-targeting TCRs for multi-antigen-based T cell therapy. Mol Ther. 2022;30(2):564–78.
pubmed: 34371177
doi: 10.1016/j.ymthe.2021.08.010
Görgün G, Calabrese E, Soydan E, Hideshima T, Perrone G, Bandi M, et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood. 2010;116(17):3227–37.
pubmed: 20651070
pmcid: 2995353
doi: 10.1182/blood-2010-04-279893
Nencioni A, Grünebach F, Patrone F, Ballestrero A, Brossart P. Proteasome inhibitors: antitumor effects and beyond. Leukemia. 2006;21(1):30–6.
pubmed: 17096016
doi: 10.1038/sj.leu.2404444
van de Donk NWCJ. Immunomodulatory effects of CD38-targeting antibodies. Immunol Lett. 2018;199:16–22.
pubmed: 29702148
doi: 10.1016/j.imlet.2018.04.005
Jones JR, Weinhold N, Ashby C, Walker BA, Wardell C, Pawlyn C, et al. Clonal evolution in myeloma: the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients. Haematologica. 2019;104(7):1440–50.
pubmed: 30733268
pmcid: 6601103
doi: 10.3324/haematol.2018.202200
Corre J, Cleynen A, du Pont SR, Buisson L, Bolli N, Attal M, et al. Multiple myeloma clonal evolution in homogeneously treated patients. Leukemia. 2018;32(12):2636–47.
pubmed: 29895955
pmcid: 6603429
doi: 10.1038/s41375-018-0153-6
Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–71.
pubmed: 29713085
pmcid: 6117613
doi: 10.1038/s41591-018-0010-1
Deng Q, Han G, Puebla-Osorio N, Ma MCJ, Strati P, Chasen B, et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 2020;26(12):1878–87.
pubmed: 33020644
pmcid: 8446909
doi: 10.1038/s41591-020-1061-7
Heipertz EL, Zynda ER, Stav-Noraas TE, Hungler AD, Boucher SE, Kaur N, et al. Current perspectives on “Off-The-Shelf” allogeneic NK and CAR-NK cell therapies. Front Immunol. 2021;12: 732135.
pubmed: 34925314
pmcid: 8671166
doi: 10.3389/fimmu.2021.732135
Kawamoto H, Masuda K, Nagano S. Regeneration of antigen-specific T cells by using induced pluripotent stem cell (iPSC) technology. Int Immunol. 2021;33(12):827–33.
pubmed: 34661676
doi: 10.1093/intimm/dxab091