FGF/FGFR signaling in adrenocortical development and tumorigenesis: novel potential therapeutic targets in adrenocortical carcinoma.


Journal

Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444

Informations de publication

Date de publication:
09 2022
Historique:
received: 30 03 2022
accepted: 08 05 2022
pubmed: 19 5 2022
medline: 20 8 2022
entrez: 18 5 2022
Statut: ppublish

Résumé

FGF/FGFR signaling regulates embryogenesis, angiogenesis, tissue homeostasis and wound repair by modulating proliferation, differentiation, survival, migration and metabolism of target cells. Understandably, compelling evidence for deregulated FGF signaling in the development and progression of different types of tumors continue to emerge and FGFR inhibitors arise as potential targeted therapeutic agents, particularly in tumors harboring aberrant FGFR signaling. There is first evidence of a dual role of the FGF/FGFR system in both organogenesis and tumorigenesis, of which this review aims to provide an overview. FGF-1 and FGF-2 are expressed in the adrenal cortex and are the most powerful mitogens for adrenocortical cells. Physiologically, they are involved in development and maintenance of the adrenal gland and bind to a family of four tyrosine kinase receptors, among which FGFR1 and FGFR4 are the most strongly expressed in the adrenal cortex. The repeatedly proven overexpression of these two FGFRs also in adrenocortical cancer is thus likely a sign of their participation in proliferation and vascularization, though the exact downstream mechanisms are not yet elucidated. Thus, FGFRs potentially offer novel therapeutic targets also for adrenocortical carcinoma, a type of cancer resistant to conventional antimitotic agents.

Identifiants

pubmed: 35583844
doi: 10.1007/s12020-022-03074-z
pii: 10.1007/s12020-022-03074-z
pmc: PMC9385797
doi:

Substances chimiques

Receptors, Fibroblast Growth Factor 0
Fibroblast Growth Factors 62031-54-3

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

411-418

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s).

Références

B. Thisse, C. Thisse, Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol. 287(2), 390–402 (2005). https://doi.org/10.1016/j.ydbio.2005.09.011
doi: 10.1016/j.ydbio.2005.09.011 pubmed: 16216232
N. Turner, R. Grose, Fibroblast growth factor signaling: from development to cancer. Nat. Rev. Cancer 10(2), 116–29 (2010). https://doi.org/10.1038/nrc2780
doi: 10.1038/nrc2780 pubmed: 20094046
M. Korc, R.E. Friesel, The role of fibroblast growth factors in tumor growth. Curr. Cancer Drug Targets 9(5), 639–51 (2009). https://doi.org/10.2174/156800909789057006
doi: 10.2174/156800909789057006 pubmed: 19508171 pmcid: 3664927
N. Itoh, D.M. Ornitz, Evolution of the Fgf and Fgfr gene families. Trends Genet 20(11), 563–9 (2004). https://doi.org/10.1016/j.tig.2004.08.007
doi: 10.1016/j.tig.2004.08.007 pubmed: 15475116
B. Farrell, A.L. Breeze, Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical targeting. Biochem. Soc. Trans. 46(6), 1753–70 (2018). https://doi.org/10.1042/bst20180004
doi: 10.1042/bst20180004 pubmed: 30545934 pmcid: 6299260
R. Dienstmann, J. Rodon, A. Prat, J. Perez-Garcia, B. Adamo, E. Felip et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann. Oncol. 25(3), 552–63 (2014). https://doi.org/10.1093/annonc/mdt419
doi: 10.1093/annonc/mdt419 pubmed: 24265351
D.M. Ornitz, N. Itoh, The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4(3), 215–66 (2015). https://doi.org/10.1002/wdev.176
doi: 10.1002/wdev.176 pubmed: 25772309 pmcid: 4393358
V.P. Eswarakumar, I. Lax, J. Schlessinger, Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16(2), 139–49 (2005). https://doi.org/10.1016/j.cytogfr.2005.01.001
doi: 10.1016/j.cytogfr.2005.01.001 pubmed: 15863030
J. Schlessinger, A.N. Plotnikov, O.A. Ibrahimi, A.V. Eliseenkova, B.K. Yeh, A. Yayon et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6(3), 743–50 (2000). https://doi.org/10.1016/s1097-2765(00)00073-3
doi: 10.1016/s1097-2765(00)00073-3 pubmed: 11030354
D.M. Ornitz, FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22(2), 108–12 (2000). https://doi.org/10.1002/(sici)1521-1878(200002)22:2<108::Aid-bies2>3.0.Co;2-m
doi: 10.1002/(sici)1521-1878(200002)22:2<108::Aid-bies2>3.0.Co;2-m pubmed: 10655030
J. Schlessinger, Cell signaling by receptor tyrosine kinases. Cell 103(2), 211–25 (2000). https://doi.org/10.1016/s0092-8674(00)00114-8
doi: 10.1016/s0092-8674(00)00114-8 pubmed: 11057895
Y.R. Hadari, N. Gotoh, H. Kouhara, I. Lax, J. Schlessinger, Critical role for the docking-protein FRS2 alpha in FGF receptor-mediated signal transduction pathways. Proc. Natl Acad. Sci. USA 98(15), 8578–83 (2001). https://doi.org/10.1073/pnas.161259898
doi: 10.1073/pnas.161259898 pubmed: 11447289 pmcid: 37478
R. Goetz, M. Mohammadi, Exploring mechanisms of FGF signalling through the lens of structural biology. Nat. Rev. Mol. Cell Biol. 14(3), 166–80 (2013). https://doi.org/10.1038/nrm3528
doi: 10.1038/nrm3528 pubmed: 23403721 pmcid: 3695728
M. Presta, P. Chiodelli, A. Giacomini, M. Rusnati, R. Ronca, Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharm. Ther. 179, 171–87 (2017). https://doi.org/10.1016/j.pharmthera.2017.05.013
doi: 10.1016/j.pharmthera.2017.05.013
M. Haase, M. Schott, S.R. Bornstein, L.K. Malendowicz, W.A. Scherbaum, H.S. Willenberg, CITED2 is expressed in human adrenocortical cells and regulated by basic fibroblast growth factor. J. Endocrinol. 192(2), 459–65 (2007). https://doi.org/10.1677/joe-06-0083
doi: 10.1677/joe-06-0083 pubmed: 17283246
A.M. Gonzalez, M. Buscaglia, M. Ong, A. Baird, Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J. Cell Biol. 110(3), 753–65 (1990). https://doi.org/10.1083/jcb.110.3.753
doi: 10.1083/jcb.110.3.753 pubmed: 1689733
A.M. Gonzalez, D.J. Hill, A. Logan, P.A. Maher, A. Baird, Distribution of fibroblast growth factor (FGF)-2 and FGF receptor-1 messenger RNA expression and protein presence in the mid-trimester human fetus. Pediatr. Res. 39(3), 375–85 (1996). https://doi.org/10.1203/00006450-199603000-00001
doi: 10.1203/00006450-199603000-00001 pubmed: 8929854
L. Guasti, W.C. Candy Sze, T. McKay, R. Grose, P.J. King, FGF signalling through Fgfr2 isoform IIIb regulates adrenal cortex development. Mol. Cell Endocrinol. 371(1–2), 182–8 (2013). https://doi.org/10.1016/j.mce.2013.01.014
doi: 10.1016/j.mce.2013.01.014 pubmed: 23376610 pmcid: 3650577
N. Boulle, C. Gicquel, A. Logié, R. Christol, J.J. Feige, Y. Le Bouc, Fibroblast growth factor-2 inhibits the maturation of pro-insulin-like growth factor-II (Pro-IGF-II) and the expression of insulin-like growth factor binding protein-2 (IGFBP-2) in the human adrenocortical tumor cell line NCI-H295R. Endocrinology 141(9), 3127–36 (2000). https://doi.org/10.1210/endo.141.9.7632
doi: 10.1210/endo.141.9.7632 pubmed: 10965883
J.J. Feige, I. Vilgrain, C. Brand, S. Bailly, S. Souchelnitskiy, Fine tuning of adrenocortical functions by locally produced growth factors. J. Endocrinol. 158(1), 7–19 (1998). https://doi.org/10.1677/joe.0.1580007
doi: 10.1677/joe.0.1580007 pubmed: 9713321
K. Crickard, C.R. Ill, R.B. Jaffe, Control of proliferation of human fetal adrenal cells in vitro. J. Clin. Endocrinol. Metab. 53(4), 790–6 (1981). https://doi.org/10.1210/jcem-53-4-790
doi: 10.1210/jcem-53-4-790 pubmed: 6270174
D.P. Basile, M.A. Holzwarth, Basic fibroblast growth factor may mediate proliferation in the compensatory adrenal growth response. Am. J. Physiol. 265(6 Pt 2), R1253–61 (1993). https://doi.org/10.1152/ajpregu.1993.265.6.R1253
doi: 10.1152/ajpregu.1993.265.6.R1253 pubmed: 8285265
P.J. Hornsby, G.N. Gill, Hormonal control of adrenocortical cell proliferation. Desensitization to ACTH and interaction between ACTH and fibroblast growth factor in bovine adrenocortical cell cultures. J. Clin. Investig. 60(2), 342–52 (1977). https://doi.org/10.1172/jci108782
doi: 10.1172/jci108782 pubmed: 194925 pmcid: 372374
C. Savona, J.J. Feige, cAMP-mediated regulation of adrenocortical cell bFGF receptors. Ann. N. Y Acad. Sci. 638, 412–5 (1991). https://doi.org/10.1111/j.1749-6632.1991.tb49056.x
doi: 10.1111/j.1749-6632.1991.tb49056.x pubmed: 1664694
H. Ishimoto, R.B. Jaffe, Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr. Rev. 32(3), 317–55 (2011). https://doi.org/10.1210/er.2010-0001
doi: 10.1210/er.2010-0001 pubmed: 21051591
S. Mesiano, R.B. Jaffe, Role of growth factors in the developmental regulation of the human fetal adrenal cortex. Steroids 62(1), 62–72 (1997). https://doi.org/10.1016/s0039-128x(96)00161-4
doi: 10.1016/s0039-128x(96)00161-4 pubmed: 9029717
F.E. Estivariz, M. Carino, P.J. Lowry, S. Jackson, Further evidence that N-terminal pro-opiomelanocortin peptides are involved in adrenal mitogenesis. J. Endocrinol. 116(2), 201–6 (1988). https://doi.org/10.1677/joe.0.1160201
doi: 10.1677/joe.0.1160201 pubmed: 2832501
F.E. Estivariz, M.I. Morano, M. Carino, S. Jackson, P.J. Lowry, Adrenal regeneration in the rat is mediated by mitogenic N-terminal pro-opiomelanocortin peptides generated by changes in precursor processing in the anterior pituitary. J. Endocrinol. 116(2), 207–16 (1988). https://doi.org/10.1677/joe.0.1160207
doi: 10.1677/joe.0.1160207 pubmed: 2832502
M. Fassnacht, S. Hahner, I.A. Hansen, T. Kreutzberger, M. Zink, K. Adermann et al. N-Terminal Proopiomelanocortin Acts as a Mitogen in Adrenocortical Tumor Cells and Decreases Adrenal Steroidogenesis. J. Clin. Endocrinol. Metab. 88(5), 2171–9 (2003). https://doi.org/10.1210/jc.2002-021318
doi: 10.1210/jc.2002-021318 pubmed: 12727972
Y. Chu, W.J. Ho, J.C. Dunn, Basic fibroblast growth factor delivery enhances adrenal cortical cellular regeneration. Tissue Eng. Part A 15(8), 2093–101 (2009). https://doi.org/10.1089/ten.tea.2008.0305
doi: 10.1089/ten.tea.2008.0305 pubmed: 19196135 pmcid: 2792105
D. Gospodarowicz, H.H. Handley, Stimulation of division of Y1 adrenal cells by a growth factor isolated from bovine pituitary glands. Endocrinology 97(1), 102–7 (1975). https://doi.org/10.1210/endo-97-1-102
doi: 10.1210/endo-97-1-102 pubmed: 166822
D. Gospodarowicz, C.R. Ill, P.J. Hornsby, G.N. Gill, Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect of epidermal growth factor. Endocrinology 100(4), 1080–9 (1977). https://doi.org/10.1210/endo-100-4-1080
doi: 10.1210/endo-100-4-1080 pubmed: 189990
A.P. Lepique, M.S. Moraes, K.M. Rocha, C.B. Eichler, G.N. Hajj, T.T. Schwindt et al. c-Myc protein is stabilized by fibroblast growth factor 2 and destabilized by ACTH to control cell cycle in mouse Y1 adrenocortical cells. J. Mol. Endocrinol. 33(3), 623–38 (2004). https://doi.org/10.1677/jme.1.01485
doi: 10.1677/jme.1.01485 pubmed: 15591023
G.E. Mattos, J.F. Jacysyn, G.P. Amarante-Mendes, C.F. Lotfi, Comparative effect of FGF2, synthetic peptides 1-28 N-POMC and ACTH on proliferation in rat adrenal cell primary cultures. Cell Tissue Res. 345(3), 343–56 (2011). https://doi.org/10.1007/s00441-011-1220-8
doi: 10.1007/s00441-011-1220-8 pubmed: 21866314
C.F. Lotfi, E.T. Costa, T.T. Schwindt, H.A. Armelin, Role of ERK/MAP kinase in mitogenic interaction between ACTH and FGF2 in mouse Y1 adrenocortical tumor cells. Endocr. Res. 26(4), 873–7 (2000). https://doi.org/10.3109/07435800009048611
doi: 10.3109/07435800009048611 pubmed: 11196465
A. Bikfalvi, S. Klein, G. Pintucci, D.B. Rifkin, Biological roles of fibroblast growth factor-2. Endocr. Rev. 18(1), 26–45 (1997). https://doi.org/10.1210/edrv.18.1.0292
doi: 10.1210/edrv.18.1.0292 pubmed: 9034785
M. Presta, P. Dell’Era, S. Mitola, E. Moroni, R. Ronca, M. Rusnati, Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16(2), 159–78 (2005). https://doi.org/10.1016/j.cytogfr.2005.01.004
doi: 10.1016/j.cytogfr.2005.01.004 pubmed: 15863032
D. Gospodarowicz, J. Cheng, G.M. Lui, A. Baird, F. Esch, P. Bohlen, Corpus luteum angiogenic factor is related to fibroblast growth factor. Endocrinology 117(6), 2383–91 (1985). https://doi.org/10.1210/endo-117-6-2383
doi: 10.1210/endo-117-6-2383 pubmed: 4065037
S. Mesiano, R.B. Jaffe, Developmental and functional biology of the primate fetal adrenal cortex. Endocr. Rev. 18(3), 378–403 (1997). https://doi.org/10.1210/edrv.18.3.0304
doi: 10.1210/edrv.18.3.0304 pubmed: 9183569
C. Meisinger, A. Hertenstein, C. Grothe, Fibroblast growth factor receptor 1 in the adrenal gland and PC12 cells: developmental expression and regulation by extrinsic molecules. Brain Res. Mol. Brain Res. 36(1), 70–8 (1996). https://doi.org/10.1016/0169-328x(95)00246-o
doi: 10.1016/0169-328x(95)00246-o pubmed: 9011767
J. Partanen, T.P. Mäkelä, E. Eerola, J. Korhonen, H. Hirvonen, L. Claesson-Welsh et al. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. Embo J. 10(6), 1347–54 (1991)
doi: 10.1002/j.1460-2075.1991.tb07654.x
S.E. Hughes, Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J. Histochem. Cytochem. 45(7), 1005–19 (1997). https://doi.org/10.1177/002215549704500710
doi: 10.1177/002215549704500710 pubmed: 9212826
R. Häfner, T. Bohnenpoll, C. Rudat, T.M. Schultheiss, A. Kispert, Fgfr2 is required for the expansion of the early adrenocortical primordium. Mol. Cell Endocrinol. 413, 168–77 (2015). https://doi.org/10.1016/j.mce.2015.06.022
doi: 10.1016/j.mce.2015.06.022 pubmed: 26141512
A.C. Kim, G.D. Hammer, Adrenocortical cells with stem/progenitor cell properties: recent advances. Mol. Cell Endocrinol. 265-266, 10–6 (2007). https://doi.org/10.1016/j.mce.2006.12.028
doi: 10.1016/j.mce.2006.12.028 pubmed: 17240045 pmcid: 1865516
S. Leng, E. Pignatti, R.S. Khetani, M.S. Shah, S. Xu, J. Miao et al. β-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis. Nat. Commun. 11(1), 1680 (2020). https://doi.org/10.1038/s41467-020-15332-7
doi: 10.1038/s41467-020-15332-7 pubmed: 32245949 pmcid: 7125176
E.M. Walczak, G.D. Hammer, Regulation of the adrenocortical stem cell niche: implications for disease. Nat. Rev. Endocrinol. 11(1), 14–28 (2015). https://doi.org/10.1038/nrendo.2014.166
doi: 10.1038/nrendo.2014.166 pubmed: 25287283
I. Sbiera, S. Kircher, B. Altieri, M. Fassnacht, M. Kroiss, S. Sbiera, Epithelial and Mesenchymal Markers in Adrenocortical Tissues: How Mesenchymal Are Adrenocortical Tissues? Cancers (Basel).13(7), (2021). https://doi.org/10.3390/cancers13071736 .
Y. Xing, A.M. Lerario, W. Rainey, G.D. Hammer, Development of adrenal cortex zonation. Endocrinol. Metab. Clin. North Am. 44(2), 243–74 (2015). https://doi.org/10.1016/j.ecl.2015.02.001
doi: 10.1016/j.ecl.2015.02.001 pubmed: 26038200 pmcid: 4486052
J.M. Revest, B. Spencer-Dene, K. Kerr, L. De Moerlooze, I. Rosewell, C. Dickson, Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev. Biol. 231(1), 47–62 (2001). https://doi.org/10.1006/dbio.2000.0144
doi: 10.1006/dbio.2000.0144 pubmed: 11180951
M.E. Pownall, H. V. Isaacs, Developmental Biology. FGF Signalling in Vertebrate Development. (Morgan & Claypool Life Sciences. Copyright © 2010 by Morgan & Claypool Life Sciences, San Rafael (CA), 2010).
M.A. Krook, J.W. Reeser, G. Ernst, H. Barker, M. Wilberding, G. Li et al. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br. J. Cancer 124(5), 880–92 (2021). https://doi.org/10.1038/s41416-020-01157-0
doi: 10.1038/s41416-020-01157-0 pubmed: 33268819
T. Helsten, M. Schwaederle, R. Kurzrock, Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev. 34(3), 479–96 (2015). https://doi.org/10.1007/s10555-015-9579-8
doi: 10.1007/s10555-015-9579-8 pubmed: 26224133 pmcid: 4573649
T. Helsten, S. Elkin, E. Arthur, B.N. Tomson, J. Carter, R. Kurzrock, The FGFR Landscape in Cancer: analysis of 4853 Tumors by Next-Generation Sequencing. Clin. Cancer Res. 22(1), 259–67 (2016). https://doi.org/10.1158/1078-0432.Ccr-14-3212
doi: 10.1158/1078-0432.Ccr-14-3212 pubmed: 26373574
L. Chen, Y. Zhang, L. Yin, B. Cai, P. Huang, X. Li et al. Fibroblast growth factor receptor fusions in cancer: opportunities and challenges. J. Exp. Clin. Cancer Res. 40(1), 345 (2021). https://doi.org/10.1186/s13046-021-02156-6
doi: 10.1186/s13046-021-02156-6 pubmed: 34732230 pmcid: 8564965
R. Ronca, A. Giacomini, M. Rusnati, M. Presta, The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin. Ther. Targets 19(10), 1361–77 (2015). https://doi.org/10.1517/14728222.2015.1062475
doi: 10.1517/14728222.2015.1062475 pubmed: 26125971
C. Lieu, J. Heymach, M. Overman, H. Tran, S. Kopetz, Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin. Cancer Res. 17(19), 6130–9 (2011). https://doi.org/10.1158/1078-0432.CCR-11-0659
doi: 10.1158/1078-0432.CCR-11-0659 pubmed: 21953501 pmcid: 5562355
R. Grose, C. Dickson, Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev. 16(2), 179–86 (2005). https://doi.org/10.1016/j.cytogfr.2005.01.003
doi: 10.1016/j.cytogfr.2005.01.003 pubmed: 15863033
A. Kommalapati, S.H. Tella, M. Borad, M. Javle, A. Mahipal, FGFR Inhibitors in Oncology: Insight on the Management of Toxicities in Clinical Practice. Cancers (Basel).13(12), (2021). https://doi.org/10.3390/cancers13122968 .
S. Zheng, A.D. Cherniack, N. Dewal, R.A. Moffitt, L. Danilova, B.A. Murray et al. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell 29(5), 723–36 (2016). https://doi.org/10.1016/j.ccell.2016.04.002
doi: 10.1016/j.ccell.2016.04.002 pubmed: 27165744 pmcid: 4864952
G. Assie, T.J. Giordano, J. Bertherat, Gene expression profiling in adrenocortical neoplasia. Mol. Cell Endocrinol. 351(1), 111–7 (2012). https://doi.org/10.1016/j.mce.2011.09.044
doi: 10.1016/j.mce.2011.09.044 pubmed: 22056416
A. de Reyniès, G. Assié, D.S. Rickman, F. Tissier, L. Groussin, F. René-Corail et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J. Clin. Oncol. 27(7), 1108–15 (2009). https://doi.org/10.1200/jco.2008.18.5678
doi: 10.1200/jco.2008.18.5678 pubmed: 19139432
B. Altieri, C.L. Ronchi, M. Kroiss, M. Fassnacht, Next-generation therapies for adrenocortical carcinoma. Best. Pr. Res Clin. Endocrinol. Metab. 34(3), 101434 (2020). https://doi.org/10.1016/j.beem.2020.101434
doi: 10.1016/j.beem.2020.101434
C.L. Ronchi, S. Sbiera, E. Leich, K. Henzel, A. Rosenwald, B. Allolio et al. Single nucleotide polymorphism array profiling of adrenocortical tumors–evidence for an adenoma carcinoma sequence? PLoS ONE 8(9), e73959 (2013). https://doi.org/10.1371/journal.pone.0073959
doi: 10.1371/journal.pone.0073959 pubmed: 24066089 pmcid: 3774745
M.C. De Martino, A. Al Ghuzlan, S. Aubert, G. Assié, J.Y. Scoazec, S. Leboulleux et al. Molecular screening for a personalized treatment approach in advanced adrenocortical cancer. J. Clin. Endocrinol. Metab. 98(10), 4080–8 (2013). https://doi.org/10.1210/jc.2013-2165
doi: 10.1210/jc.2013-2165 pubmed: 23979958
T.J. Giordano, D.G. Thomas, R. Kuick, M. Lizyness, D.E. Misek, A.L. Smith et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am. J. Pathol. 162(2), 521–31 (2003). https://doi.org/10.1016/s0002-9440(10)63846-1
doi: 10.1016/s0002-9440(10)63846-1 pubmed: 12547710 pmcid: 1851158
F. de Fraipont, M. El Atifi, N. Cherradi, G. Le Moigne, G. Defaye, R. Houlgatte et al. Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy. J. Clin. Endocrinol. Metab. 90(3), 1819–29 (2005). https://doi.org/10.1210/jc.2004-1075
doi: 10.1210/jc.2004-1075 pubmed: 15613424
C. Laurell, D. Velázquez-Fernández, K. Lindsten, C. Juhlin, U. Enberg, J. Geli et al. Transcriptional profiling enables molecular classification of adrenocortical tumours. Eur. J. Endocrinol. 161(1), 141–52 (2009). https://doi.org/10.1530/EJE-09-0068
doi: 10.1530/EJE-09-0068 pubmed: 19411298
A.N. West, G.A. Neale, S. Pounds, B.C. Figueredo, C. Rodriguez Galindo, M.A. Pianovski et al. Gene expression profiling of childhood adrenocortical tumors. Cancer Res. 67(2), 600–8 (2007). https://doi.org/10.1158/0008-5472.Can-06-3767
doi: 10.1158/0008-5472.Can-06-3767 pubmed: 17234769
L.P. Brito, T.C. Ribeiro, M.Q. Almeida, A.A. Jorge, I.C. Soares, A.C. Latronico et al. The role of fibroblast growth factor receptor 4 overexpression and gene amplification as prognostic markers in pediatric and adult adrenocortical tumors. Endocr. Relat. Cancer 19(3), L11–3 (2012). https://doi.org/10.1530/ERC-11-0231
doi: 10.1530/ERC-11-0231 pubmed: 22241720
I. Sbiera, S. Kircher, B. Altieri, K. Lenz, C. Hantel, M. Fassnacht et al. Role of FGF Receptors and Their Pathways in Adrenocortical Tumors and Possible Therapeutic Implications. Front. Endocrinol. (Lausanne) 12, 795116 (2021). https://doi.org/10.3389/fendo.2021.795116
doi: 10.3389/fendo.2021.795116
P. Krejci, A. Aklian, M. Kaucka, E. Sevcikova, J. Prochazkova, J.K. Masek et al. Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PLoS ONE 7(4), e35826 (2012). https://doi.org/10.1371/journal.pone.0035826
doi: 10.1371/journal.pone.0035826 pubmed: 22558232 pmcid: 3338780
C.C. Juhlin, G. Goh, J.M. Healy, A.L. Fonseca, U.I. Scholl, A. Stenman et al. Whole-Exome Sequencing Characterizes the Landscape of Somatic Mutations and Copy Number Alterations in Adrenocortical Carcinoma. J. Clin. Endocrinol. Metab. 100(3), E493–E502 (2015). https://doi.org/10.1210/jc.2014-3282
doi: 10.1210/jc.2014-3282 pubmed: 25490274
M. Haase, A. Thiel, U.I. Scholl, H. Ashmawy, M. Schott, M. Ehlers, Subcellular localization of fibroblast growth factor receptor type 2 and correlation with CTNNB1 genotype in adrenocortical carcinoma. BMC Res. Notes 13(1), 282 (2020). https://doi.org/10.1186/s13104-020-05110-5
doi: 10.1186/s13104-020-05110-5 pubmed: 32522271 pmcid: 7288682
I. Ahmad, T. Iwata, H.Y. Leung, Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta 1823(4), 850–60 (2012). https://doi.org/10.1016/j.bbamcr.2012.01.004
doi: 10.1016/j.bbamcr.2012.01.004 pubmed: 22273505
A. Giacomini, P. Chiodelli, S. Matarazzo, M. Rusnati, M. Presta, R. Ronca, Blocking the FGF/FGFR system as a “two-compartment” antiangiogenic/antitumor approach in cancer therapy. Pharm. Res. 107, 172–85 (2016). https://doi.org/10.1016/j.phrs.2016.03.024
doi: 10.1016/j.phrs.2016.03.024
M.V. Dieci, M. Arnedos, F. Andre, J.C. Soria, Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Disco. 3(3), 264–79 (2013). https://doi.org/10.1158/2159-8290.Cd-12-0362
doi: 10.1158/2159-8290.Cd-12-0362
Y.K. Chae, K. Ranganath, P.S. Hammerman, C. Vaklavas, N. Mohindra, A. Kalyan et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 8(9), 16052–74 (2017). https://doi.org/10.18632/oncotarget.14109
doi: 10.18632/oncotarget.14109 pubmed: 28030802
B. Konda, L.S. Kirschner, Novel targeted therapies in adrenocortical carcinoma. Curr. Opin. Endocrinol. Diabetes Obes. 23(3), 233–41 (2016). https://doi.org/10.1097/med.0000000000000247
doi: 10.1097/med.0000000000000247 pubmed: 27119750 pmcid: 5011969
J. García-Donas, S. Hernando Polo, M. Guix, M.A. Climent Duran, M.J. Méndez-Vidal, P. Jiménez-Fonseca, et al. Phase II study of dovitinib in first line metastatic or (non resectable primary) adrenocortical carcinoma (ACC): SOGUG study 2011-03. Journal of Clinical Oncology 32(15_suppl):4588-4588 (2014). https://doi.org/10.1200/jco.2014.32.15_suppl.4588
K.P. Papadopoulos, B.F. El-Rayes, A.W. Tolcher, A. Patnaik, D.W. Rasco, R.D. Harvey et al. A Phase 1 study of ARQ 087, an oral pan-FGFR inhibitor in patients with advanced solid tumours. Br. J. Cancer 117(11), 1592–9 (2017). https://doi.org/10.1038/bjc.2017.330
doi: 10.1038/bjc.2017.330 pubmed: 28972963 pmcid: 5729432
M. Katoh, FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J. Mol. Med. 38(1), 3–15 (2016). https://doi.org/10.3892/ijmm.2016.2620
doi: 10.3892/ijmm.2016.2620 pubmed: 27245147 pmcid: 4899036
G.C. Ghedini, R. Ronca, M. Presta, A. Giacomini, Future applications of FGF/FGFR inhibitors in cancer. Expert Rev. Anticancer Ther. 18(9), 861–72 (2018). https://doi.org/10.1080/14737140.2018.1491795
doi: 10.1080/14737140.2018.1491795 pubmed: 29936878

Auteurs

Mariangela Tamburello (M)

Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.

Barbara Altieri (B)

Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.

Iuliu Sbiera (I)

Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.

Sandra Sigala (S)

Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.

Alfredo Berruti (A)

Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy.

Martin Fassnacht (M)

Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
Comprehenssive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.

Silviu Sbiera (S)

Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany. Sbiera_S@ukw.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH