Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
19 05 2022
19 05 2022
Historique:
received:
26
05
2021
accepted:
28
04
2022
entrez:
19
5
2022
pubmed:
20
5
2022
medline:
24
5
2022
Statut:
epublish
Résumé
The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the differential impact of distinct TP53 mutations on disease features may make TP53 mutational information more actionable, holding potential for better precision-based medicine.
Identifiants
pubmed: 35589715
doi: 10.1038/s41467-022-30481-7
pii: 10.1038/s41467-022-30481-7
pmc: PMC9120190
doi:
Substances chimiques
Tumor Suppressor Protein p53
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2800Subventions
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Persp. Biol. 2, (2010).
Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).
pubmed: 24132290
pmcid: 3927368
doi: 10.1038/nature12634
Donehower, L. A. et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28, 1370–1384.e5 (2019).
pubmed: 31365877
pmcid: 7546539
doi: 10.1016/j.celrep.2019.07.001
Oren, M. & Rotter, V. Mutant p53 gain-of-function in cancer. Cold Spring Harb. Persp. Biol. 2, (2010).
Freed-Pastor, W. A. & Prives, C. Mutant p53: One name, many proteins. Genes Dev. 26, 1268–1286 (2012).
pubmed: 22713868
pmcid: 3387655
doi: 10.1101/gad.190678.112
Muller, P. A. J. & Vousden, K. H. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell 25, 304–317 (2014).
pubmed: 24651012
pmcid: 3970583
doi: 10.1016/j.ccr.2014.01.021
Kim, M. P. & Lozano, G. Mutant p53 partners in crime. Cell Death Differ. 25, 161–168 (2018).
pubmed: 29099488
doi: 10.1038/cdd.2017.185
Mantovani, F., Collavin, L. & Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26, 199–212 (2019).
pubmed: 30538286
doi: 10.1038/s41418-018-0246-9
Tang, Q., Su, Z., Gu, W. & Rustgi, A. K. Mutant p53 on the path to metastasis. Trends Cancer 6, 62 (2020).
pubmed: 31952783
doi: 10.1016/j.trecan.2019.11.004
Baugh, E. H., Ke, H., Levine, A. J., Bonneau, R. A. & Chan, C. S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25, 154–160 (2018).
pubmed: 29099487
doi: 10.1038/cdd.2017.180
May, P. & May, E. Twenty years of p53 research: Structural and functional aspects of the p53 protein. Oncogene 18, 7621–7636 (1999).
pubmed: 10618702
doi: 10.1038/sj.onc.1203285
Eldar, A., Rozenberg, H., Diskin-Posner, Y., Rohs, R. & Shakked, Z. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein–DNA interactions. Nucleic Acids Res. 41, 8748–8759 (2013).
pubmed: 23863845
pmcid: 3794590
doi: 10.1093/nar/gkt630
Halevy, O., Michalovitz, D. & Oren, M. Different tumor-derived p53 mutants exhibit distinct biological activities. Sci. (80-.). 250, 113–116 (1990).
doi: 10.1126/science.2218501
Goldstein, I. et al. Understanding wild-type and mutant p53 activities in human cancer: New landmarks on the way to targeted therapies. Cancer Gene Ther. 18, 2–11 (2011).
pubmed: 20966976
doi: 10.1038/cgt.2010.63
Turrell, F. K. et al. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes Dev. 31, 1339–1353 (2017).
pubmed: 28790158
pmcid: 5580655
doi: 10.1101/gad.298463.117
Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 2017 151 15, 13–30 (2017).
doi: 10.1038/nrclinonc.2017.151
Schulz-Heddergott, R. et al. Therapeutic Ablation of Gain-of-Function Mutant p53 in Colorectal Cancer Inhibits Stat3-Mediated Tumor Growth and Invasion. Cancer Cell 34, 298 (2018).
pubmed: 30107178
pmcid: 6582949
doi: 10.1016/j.ccell.2018.07.004
Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).
pubmed: 15607980
doi: 10.1016/j.cell.2004.11.004
Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca. Cancer J. Clin. 71, 209–249 (2021).
pubmed: 33538338
doi: 10.3322/caac.21660
Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).
pubmed: 8861899
doi: 10.1016/S0092-8674(00)81333-1
Gerstung, M. et al. The evolutionary history of 2658 cancers. Nat 2020 5787793 578, 122–128 (2020).
Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865 (2016).
pubmed: 27149842
pmcid: 4850357
doi: 10.1016/j.celrep.2016.03.075
Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035–1049.e19 (2019).
pubmed: 31031003
pmcid: 6768830
doi: 10.1016/j.cell.2019.03.030
Zaidi, S. H. et al. Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nat. Commun. 11, 1–12 (2020).
doi: 10.1038/s41467-020-17386-z
Yaeger, R. et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 33, 125–136.e3 (2018).
pubmed: 29316426
pmcid: 5765991
doi: 10.1016/j.ccell.2017.12.004
Franko, J. et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: A pooled analysis of North Central Cancer Treatment Group phase III trials N9741 and N9841. J. Clin. Oncol. 30, 263–267 (2012).
pubmed: 22162570
doi: 10.1200/JCO.2011.37.1039
Aoyagi, T., Terracina, K. P., Raza, A. & Takabe, K. Current treatment options for colon cancer peritoneal carcinomatosis. World J. Gastroenterol. 20, 12493–12500 (2014).
pubmed: 25253949
pmcid: 4168082
doi: 10.3748/wjg.v20.i35.12493
Damiens, K. et al. Clinical features and course of brain metastases in colorectal cancer: An experience from a single institution. Curr. Oncol. 19, 254–258 (2012).
pubmed: 23144573
pmcid: 3457876
doi: 10.3747/co.19.1048
Haupt, S. & Haupt, Y. Cancer and Tumour Suppressor p53 Encounters at the Juncture of Sex Disparity. Front. Genet. 12, 169 (2021).
doi: 10.3389/fgene.2021.632719
Rochette, P. J., Bastien, N., Lavoie, J., Guérin, S. L. & Drouin, R. SW480, a p53 Double-mutant Cell Line Retains Proficiency for Some p53 Functions. J. Mol. Biol. 352, 44–57 (2005).
pubmed: 16061257
doi: 10.1016/j.jmb.2005.06.033
Solomon, H. et al. Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers. Oncogene 37, 1669–1684 (2018).
pubmed: 29343849
pmcid: 6448595
doi: 10.1038/s41388-017-0060-8
Keren-Shaul, H. et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat. Protoc. 14, 1841–1862 (2019).
pubmed: 31101904
doi: 10.1038/s41596-019-0164-4
Rahnamoun, H. et al. Mutant p53 shapes the enhancer landscape of cancer cells in response to chronic immune signaling. Nat. Commun. 8, (2017).
Sur, S. et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl Acad. Sci. USA. 106, 3964 (2009).
pubmed: 19225112
pmcid: 2656188
doi: 10.1073/pnas.0813333106
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).
pubmed: 26457759
pmcid: 4636487
doi: 10.1038/nm.3967
Sveen, A. et al. Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin. Cancer Res. 24, 794–806 (2018).
pubmed: 29242316
doi: 10.1158/1078-0432.CCR-17-1234
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1–10 (2019).
Najm, P. & El-Sibai, M. Palladin regulation of the actin structures needed for cancer invasion. Cell Adhes. Migr. 8, 29–35 (2014).
doi: 10.4161/cam.28024
Yilmaz, M. & Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28, 15–33 (2009).
pubmed: 19169796
doi: 10.1007/s10555-008-9169-0
Sun, B., Fang, Y., Li, Z., Chen, Z. & Xiang, J. Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression. Biomed. Rep. 3, 603–610 (2015).
pubmed: 26405532
pmcid: 4576489
doi: 10.3892/br.2015.494
Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).
pubmed: 20729930
pmcid: 2992881
doi: 10.1038/nrm2957
Leve, F. & Morgado-Díaz, J. A. Rho GTPase signaling in the development of colorectal cancer. J. Cell. Biochem. 113, 2549–2559 (2012).
pubmed: 22467564
doi: 10.1002/jcb.24153
Haga, R. B. & Ridley, A. J. Rho GTPases: regulation and roles in cancer cell biology. Small GTPases 7, 207–221 (2016).
pubmed: 27628050
pmcid: 5129894
doi: 10.1080/21541248.2016.1232583
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461
pmcid: 4840234
doi: 10.1038/nbt.1630
Unger, T., Nau, M. M., Segal, S. & Minna, J. D. P53: A transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J. 11, 1383–1390 (1992).
pubmed: 1314165
pmcid: 556587
doi: 10.1002/j.1460-2075.1992.tb05183.x
Raycroft, L., Schmidt, J. R., Yoas, K., Hao, M. M. & Lozano, G. Analysis of p53 mutants for transcriptional activity. Mol. Cell. Biol. 11, 6067–6074 (1991).
pubmed: 1944276
pmcid: 361778
Singh, S. et al. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication. J. Clin. Invest. 127, 1839 (2017).
pubmed: 28394262
pmcid: 5409068
doi: 10.1172/JCI87724
Raj, N. & Attardi, L. D. The transactivation domains of the p53 protein. Cold Spring Harb. Perspect. Med. 7, (2017).
Boeva, V. Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in Eukaryotic cells. Front. Genet. 7, 24 (2016).
pubmed: 26941778
pmcid: 4763482
doi: 10.3389/fgene.2016.00024
Blattler, A. & Farnham, P. J. Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem. 288, 34287–34294 (2013).
pubmed: 24151070
pmcid: 3843044
doi: 10.1074/jbc.R113.512517
Di Agostino, S. et al. Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10, 191–202 (2006).
pubmed: 16959611
doi: 10.1016/j.ccr.2006.08.013
Strano, S. et al. Mutant p53: An oncogenic transcription factor. Oncogene 26, 2212–2219 (2007).
pubmed: 17401430
doi: 10.1038/sj.onc.1210296
Liu, K., Lin, F. T., Graves, J. D., Lee, Y. J. & Lin, W. C. Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin. Proc. Natl Acad. Sci. U. S. A. 114, E3766–E3775 (2017).
pubmed: 28439015
pmcid: 5441733
Capaci, V. et al. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat. Commun. 11, 1–19 (2020).
doi: 10.1038/s41467-020-17596-5
Sicari, D. et al. Mutant p53 improves cancer cells’ resistance to endoplasmic reticulum stress by sustaining activation of the UPR regulator ATF6. Oncogene 38, 6184–6195 (2019).
pubmed: 31312025
doi: 10.1038/s41388-019-0878-3
Walerych, D. et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat. Cell Biol. 18, 897–909 (2016).
pubmed: 27347849
doi: 10.1038/ncb3380
Ghosh, M. et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell 39, 494–508.e5 (2021).
pubmed: 33545063
pmcid: 8044023
doi: 10.1016/j.ccell.2021.01.003
Liu, J., Zhang, C., Hu, W. & Feng, Z. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 356, 197–203 (2015).
pubmed: 24374014
doi: 10.1016/j.canlet.2013.12.025
Iwanicki, M. P. et al. Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition. JCI Insight 1, 86829 (2019).
Solomon, H. et al. Various p53 mutant proteins differently regulate the ras circuit to induce a cancer-related gene signature. J. Cell Sci. 125, 3144–3152 (2012).
pubmed: 22427690
Zhang, Y. et al. Somatic Trp53 mutations differentially drive breast cancer and evolution of metastases. Nat. Commun. 9, 3953–3953 (2018).
pubmed: 30262850
pmcid: 6160420
doi: 10.1038/s41467-018-06146-9
Humpton, T. J., Hock, A. K., Maddocks, O. D. K. & Vousden, K. H. p53-mediated adaptation to serine starvation is retained by a common tumour-derived mutant. Cancer Metab. 6, 18 (2018).
pubmed: 30524726
pmcid: 6276204
doi: 10.1186/s40170-018-0191-6
Strano, S. et al. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J. Biol. Chem. 277, 18817–18826 (2002).
pubmed: 11893750
doi: 10.1074/jbc.M201405200
Marin, M. C. et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat. Genet. 25, 47–54 (2000).
pubmed: 10802655
doi: 10.1038/75586
Zhao, Y. et al. P53-R273H mutation enhances colorectal cancer stemness through regulating specific lncRNAs. J. Exp. Clin. Cancer Res. 38, 1–16 (2019).
doi: 10.1186/s13046-019-1375-9
Picard, E., Verschoor, C. P., Ma, G. W. & Pawelec, G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front. Immunol. 11 (2020).
Roelands, J. et al. Immunogenomic classification of colorectal cancer and therapeutic implications. Int. J. Mol. Sci. 18 (2017).
Kotler, E. et al. A Systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell 71, 178–190.e8 (2018).
pubmed: 29979965
doi: 10.1016/j.molcel.2018.06.012
Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Sci. (80-.). 365, 599–604 (2019).
doi: 10.1126/science.aax3649
Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).
pubmed: 32728212
pmcid: 7116712
doi: 10.1038/s41586-020-2541-0
Tang, J. et al. Trp53 null and R270H mutant alleles have comparable effects in regulating invasion, metastasis, and gene expression in mouse colon tumorigenesis. Lab. Investig. 99, 1454–1469 (2019).
pubmed: 31148594
doi: 10.1038/s41374-019-0269-y
Varghese, A. Chemotherapy for stage II colon cancer. Clin. Colon Rectal Surg. 28, 256–261 (2015).
pubmed: 26648796
pmcid: 4655109
doi: 10.1055/s-0035-1564430
Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L., & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotech 34, 339–344 (2016).
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
pubmed: 31570887
doi: 10.1038/s41592-019-0582-9
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Kohen, R. et al. UTAP: user-friendly transcriptome analysis pipeline. BMC Bioinforma. 2019 201 20, 1–7 (2019).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. U. S. A. 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Wang, S. et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502 (2013).
pubmed: 24263090
pmcid: 4135175
doi: 10.1038/nprot.2013.150
Cartharius, K. et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21, 2933–2942 (2005).
pubmed: 15860560
doi: 10.1093/bioinformatics/bti473
Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32 (2004).