Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
19 05 2022
Historique:
received: 26 05 2021
accepted: 28 04 2022
entrez: 19 5 2022
pubmed: 20 5 2022
medline: 24 5 2022
Statut: epublish

Résumé

The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the differential impact of distinct TP53 mutations on disease features may make TP53 mutational information more actionable, holding potential for better precision-based medicine.

Identifiants

pubmed: 35589715
doi: 10.1038/s41467-022-30481-7
pii: 10.1038/s41467-022-30481-7
pmc: PMC9120190
doi:

Substances chimiques

Tumor Suppressor Protein p53 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2800

Subventions

Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Persp. Biol. 2, (2010).
Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).
pubmed: 24132290 pmcid: 3927368 doi: 10.1038/nature12634
Donehower, L. A. et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28, 1370–1384.e5 (2019).
pubmed: 31365877 pmcid: 7546539 doi: 10.1016/j.celrep.2019.07.001
Oren, M. & Rotter, V. Mutant p53 gain-of-function in cancer. Cold Spring Harb. Persp. Biol. 2, (2010).
Freed-Pastor, W. A. & Prives, C. Mutant p53: One name, many proteins. Genes Dev. 26, 1268–1286 (2012).
pubmed: 22713868 pmcid: 3387655 doi: 10.1101/gad.190678.112
Muller, P. A. J. & Vousden, K. H. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell 25, 304–317 (2014).
pubmed: 24651012 pmcid: 3970583 doi: 10.1016/j.ccr.2014.01.021
Kim, M. P. & Lozano, G. Mutant p53 partners in crime. Cell Death Differ. 25, 161–168 (2018).
pubmed: 29099488 doi: 10.1038/cdd.2017.185
Mantovani, F., Collavin, L. & Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26, 199–212 (2019).
pubmed: 30538286 doi: 10.1038/s41418-018-0246-9
Tang, Q., Su, Z., Gu, W. & Rustgi, A. K. Mutant p53 on the path to metastasis. Trends Cancer 6, 62 (2020).
pubmed: 31952783 doi: 10.1016/j.trecan.2019.11.004
Baugh, E. H., Ke, H., Levine, A. J., Bonneau, R. A. & Chan, C. S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25, 154–160 (2018).
pubmed: 29099487 doi: 10.1038/cdd.2017.180
May, P. & May, E. Twenty years of p53 research: Structural and functional aspects of the p53 protein. Oncogene 18, 7621–7636 (1999).
pubmed: 10618702 doi: 10.1038/sj.onc.1203285
Eldar, A., Rozenberg, H., Diskin-Posner, Y., Rohs, R. & Shakked, Z. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein–DNA interactions. Nucleic Acids Res. 41, 8748–8759 (2013).
pubmed: 23863845 pmcid: 3794590 doi: 10.1093/nar/gkt630
Halevy, O., Michalovitz, D. & Oren, M. Different tumor-derived p53 mutants exhibit distinct biological activities. Sci. (80-.). 250, 113–116 (1990).
doi: 10.1126/science.2218501
Goldstein, I. et al. Understanding wild-type and mutant p53 activities in human cancer: New landmarks on the way to targeted therapies. Cancer Gene Ther. 18, 2–11 (2011).
pubmed: 20966976 doi: 10.1038/cgt.2010.63
Turrell, F. K. et al. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes Dev. 31, 1339–1353 (2017).
pubmed: 28790158 pmcid: 5580655 doi: 10.1101/gad.298463.117
Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 2017 151 15, 13–30 (2017).
doi: 10.1038/nrclinonc.2017.151
Schulz-Heddergott, R. et al. Therapeutic Ablation of Gain-of-Function Mutant p53 in Colorectal Cancer Inhibits Stat3-Mediated Tumor Growth and Invasion. Cancer Cell 34, 298 (2018).
pubmed: 30107178 pmcid: 6582949 doi: 10.1016/j.ccell.2018.07.004
Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).
pubmed: 15607980 doi: 10.1016/j.cell.2004.11.004
Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca. Cancer J. Clin. 71, 209–249 (2021).
pubmed: 33538338 doi: 10.3322/caac.21660
Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).
pubmed: 8861899 doi: 10.1016/S0092-8674(00)81333-1
Gerstung, M. et al. The evolutionary history of 2658 cancers. Nat 2020 5787793 578, 122–128 (2020).
Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857–865 (2016).
pubmed: 27149842 pmcid: 4850357 doi: 10.1016/j.celrep.2016.03.075
Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035–1049.e19 (2019).
pubmed: 31031003 pmcid: 6768830 doi: 10.1016/j.cell.2019.03.030
Zaidi, S. H. et al. Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nat. Commun. 11, 1–12 (2020).
doi: 10.1038/s41467-020-17386-z
Yaeger, R. et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 33, 125–136.e3 (2018).
pubmed: 29316426 pmcid: 5765991 doi: 10.1016/j.ccell.2017.12.004
Franko, J. et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: A pooled analysis of North Central Cancer Treatment Group phase III trials N9741 and N9841. J. Clin. Oncol. 30, 263–267 (2012).
pubmed: 22162570 doi: 10.1200/JCO.2011.37.1039
Aoyagi, T., Terracina, K. P., Raza, A. & Takabe, K. Current treatment options for colon cancer peritoneal carcinomatosis. World J. Gastroenterol. 20, 12493–12500 (2014).
pubmed: 25253949 pmcid: 4168082 doi: 10.3748/wjg.v20.i35.12493
Damiens, K. et al. Clinical features and course of brain metastases in colorectal cancer: An experience from a single institution. Curr. Oncol. 19, 254–258 (2012).
pubmed: 23144573 pmcid: 3457876 doi: 10.3747/co.19.1048
Haupt, S. & Haupt, Y. Cancer and Tumour Suppressor p53 Encounters at the Juncture of Sex Disparity. Front. Genet. 12, 169 (2021).
doi: 10.3389/fgene.2021.632719
Rochette, P. J., Bastien, N., Lavoie, J., Guérin, S. L. & Drouin, R. SW480, a p53 Double-mutant Cell Line Retains Proficiency for Some p53 Functions. J. Mol. Biol. 352, 44–57 (2005).
pubmed: 16061257 doi: 10.1016/j.jmb.2005.06.033
Solomon, H. et al. Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers. Oncogene 37, 1669–1684 (2018).
pubmed: 29343849 pmcid: 6448595 doi: 10.1038/s41388-017-0060-8
Keren-Shaul, H. et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat. Protoc. 14, 1841–1862 (2019).
pubmed: 31101904 doi: 10.1038/s41596-019-0164-4
Rahnamoun, H. et al. Mutant p53 shapes the enhancer landscape of cancer cells in response to chronic immune signaling. Nat. Commun. 8, (2017).
Sur, S. et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl Acad. Sci. USA. 106, 3964 (2009).
pubmed: 19225112 pmcid: 2656188 doi: 10.1073/pnas.0813333106
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).
pubmed: 26457759 pmcid: 4636487 doi: 10.1038/nm.3967
Sveen, A. et al. Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin. Cancer Res. 24, 794–806 (2018).
pubmed: 29242316 doi: 10.1158/1078-0432.CCR-17-1234
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1–10 (2019).
Najm, P. & El-Sibai, M. Palladin regulation of the actin structures needed for cancer invasion. Cell Adhes. Migr. 8, 29–35 (2014).
doi: 10.4161/cam.28024
Yilmaz, M. & Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28, 15–33 (2009).
pubmed: 19169796 doi: 10.1007/s10555-008-9169-0
Sun, B., Fang, Y., Li, Z., Chen, Z. & Xiang, J. Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression. Biomed. Rep. 3, 603–610 (2015).
pubmed: 26405532 pmcid: 4576489 doi: 10.3892/br.2015.494
Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).
pubmed: 20729930 pmcid: 2992881 doi: 10.1038/nrm2957
Leve, F. & Morgado-Díaz, J. A. Rho GTPase signaling in the development of colorectal cancer. J. Cell. Biochem. 113, 2549–2559 (2012).
pubmed: 22467564 doi: 10.1002/jcb.24153
Haga, R. B. & Ridley, A. J. Rho GTPases: regulation and roles in cancer cell biology. Small GTPases 7, 207–221 (2016).
pubmed: 27628050 pmcid: 5129894 doi: 10.1080/21541248.2016.1232583
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).
pubmed: 20436461 pmcid: 4840234 doi: 10.1038/nbt.1630
Unger, T., Nau, M. M., Segal, S. & Minna, J. D. P53: A transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J. 11, 1383–1390 (1992).
pubmed: 1314165 pmcid: 556587 doi: 10.1002/j.1460-2075.1992.tb05183.x
Raycroft, L., Schmidt, J. R., Yoas, K., Hao, M. M. & Lozano, G. Analysis of p53 mutants for transcriptional activity. Mol. Cell. Biol. 11, 6067–6074 (1991).
pubmed: 1944276 pmcid: 361778
Singh, S. et al. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication. J. Clin. Invest. 127, 1839 (2017).
pubmed: 28394262 pmcid: 5409068 doi: 10.1172/JCI87724
Raj, N. & Attardi, L. D. The transactivation domains of the p53 protein. Cold Spring Harb. Perspect. Med. 7, (2017).
Boeva, V. Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in Eukaryotic cells. Front. Genet. 7, 24 (2016).
pubmed: 26941778 pmcid: 4763482 doi: 10.3389/fgene.2016.00024
Blattler, A. & Farnham, P. J. Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem. 288, 34287–34294 (2013).
pubmed: 24151070 pmcid: 3843044 doi: 10.1074/jbc.R113.512517
Di Agostino, S. et al. Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10, 191–202 (2006).
pubmed: 16959611 doi: 10.1016/j.ccr.2006.08.013
Strano, S. et al. Mutant p53: An oncogenic transcription factor. Oncogene 26, 2212–2219 (2007).
pubmed: 17401430 doi: 10.1038/sj.onc.1210296
Liu, K., Lin, F. T., Graves, J. D., Lee, Y. J. & Lin, W. C. Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin. Proc. Natl Acad. Sci. U. S. A. 114, E3766–E3775 (2017).
pubmed: 28439015 pmcid: 5441733
Capaci, V. et al. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat. Commun. 11, 1–19 (2020).
doi: 10.1038/s41467-020-17596-5
Sicari, D. et al. Mutant p53 improves cancer cells’ resistance to endoplasmic reticulum stress by sustaining activation of the UPR regulator ATF6. Oncogene 38, 6184–6195 (2019).
pubmed: 31312025 doi: 10.1038/s41388-019-0878-3
Walerych, D. et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat. Cell Biol. 18, 897–909 (2016).
pubmed: 27347849 doi: 10.1038/ncb3380
Ghosh, M. et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell 39, 494–508.e5 (2021).
pubmed: 33545063 pmcid: 8044023 doi: 10.1016/j.ccell.2021.01.003
Liu, J., Zhang, C., Hu, W. & Feng, Z. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 356, 197–203 (2015).
pubmed: 24374014 doi: 10.1016/j.canlet.2013.12.025
Iwanicki, M. P. et al. Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition. JCI Insight 1, 86829 (2019).
Solomon, H. et al. Various p53 mutant proteins differently regulate the ras circuit to induce a cancer-related gene signature. J. Cell Sci. 125, 3144–3152 (2012).
pubmed: 22427690
Zhang, Y. et al. Somatic Trp53 mutations differentially drive breast cancer and evolution of metastases. Nat. Commun. 9, 3953–3953 (2018).
pubmed: 30262850 pmcid: 6160420 doi: 10.1038/s41467-018-06146-9
Humpton, T. J., Hock, A. K., Maddocks, O. D. K. & Vousden, K. H. p53-mediated adaptation to serine starvation is retained by a common tumour-derived mutant. Cancer Metab. 6, 18 (2018).
pubmed: 30524726 pmcid: 6276204 doi: 10.1186/s40170-018-0191-6
Strano, S. et al. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J. Biol. Chem. 277, 18817–18826 (2002).
pubmed: 11893750 doi: 10.1074/jbc.M201405200
Marin, M. C. et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat. Genet. 25, 47–54 (2000).
pubmed: 10802655 doi: 10.1038/75586
Zhao, Y. et al. P53-R273H mutation enhances colorectal cancer stemness through regulating specific lncRNAs. J. Exp. Clin. Cancer Res. 38, 1–16 (2019).
doi: 10.1186/s13046-019-1375-9
Picard, E., Verschoor, C. P., Ma, G. W. & Pawelec, G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front. Immunol. 11 (2020).
Roelands, J. et al. Immunogenomic classification of colorectal cancer and therapeutic implications. Int. J. Mol. Sci. 18 (2017).
Kotler, E. et al. A Systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell 71, 178–190.e8 (2018).
pubmed: 29979965 doi: 10.1016/j.molcel.2018.06.012
Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Sci. (80-.). 365, 599–604 (2019).
doi: 10.1126/science.aax3649
Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).
pubmed: 32728212 pmcid: 7116712 doi: 10.1038/s41586-020-2541-0
Tang, J. et al. Trp53 null and R270H mutant alleles have comparable effects in regulating invasion, metastasis, and gene expression in mouse colon tumorigenesis. Lab. Investig. 99, 1454–1469 (2019).
pubmed: 31148594 doi: 10.1038/s41374-019-0269-y
Varghese, A. Chemotherapy for stage II colon cancer. Clin. Colon Rectal Surg. 28, 256–261 (2015).
pubmed: 26648796 pmcid: 4655109 doi: 10.1055/s-0035-1564430
Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L., & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotech 34, 339–344 (2016).
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
pubmed: 31570887 doi: 10.1038/s41592-019-0582-9
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Kohen, R. et al. UTAP: user-friendly transcriptome analysis pipeline. BMC Bioinforma. 2019 201 20, 1–7 (2019).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. U. S. A. 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Wang, S. et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502 (2013).
pubmed: 24263090 pmcid: 4135175 doi: 10.1038/nprot.2013.150
Cartharius, K. et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21, 2933–2942 (2005).
pubmed: 15860560 doi: 10.1093/bioinformatics/bti473
Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32 (2004).

Auteurs

Ori Hassin (O)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Nishanth Belugali Nataraj (NB)

Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.

Michal Shreberk-Shaked (M)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Yael Aylon (Y)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Rona Yaeger (R)

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Giulia Fontemaggi (G)

Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Saptaparna Mukherjee (S)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Martino Maddalena (M)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Adi Avioz (A)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Ortal Iancu (O)

The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.

Giuseppe Mallel (G)

Pathology Department, Curesponse Ltd, Rehovot, Israel.

Anat Gershoni (A)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Inna Grosheva (I)

Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.

Ester Feldmesser (E)

Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.

Shifra Ben-Dor (S)

Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.

Ofra Golani (O)

Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel.

Ayal Hendel (A)

The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.

Giovanni Blandino (G)

Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

David Kelsen (D)

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Yosef Yarden (Y)

Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.

Moshe Oren (M)

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. moshe.oren@weizmann.ac.il.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH