KappaBle fluorescent reporter mice enable low-background single-cell detection of NF-κB transcriptional activity in vivo.
Journal
Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
02
09
2021
accepted:
05
05
2022
revised:
25
03
2022
pubmed:
20
5
2022
medline:
9
7
2022
entrez:
19
5
2022
Statut:
ppublish
Résumé
Nuclear factor-κB (NF-κB) is a transcription factor with a key role in a great variety of cellular processes from embryonic development to immunity, the outcome of which depends on the fine-tuning of NF-κB activity. The development of sensitive and faithful reporter systems to accurately monitor the activation status of this transcription factor is therefore desirable. To address this need, over the years a number of different approaches have been used to generate NF-κB reporter mice, which can be broadly subdivided into bioluminescence- and fluorescence-based systems. While the former enables whole-body visualization of the activation status of NF-κB, the latter have the potential to allow the analysis of NF-κB activity at single-cell level. However, fluorescence-based reporters frequently show poor sensitivity and excessive background or are incompatible with high-throughput flow cytometric analysis. In this work we describe the generation and analysis of ROSA26 knock-in NF-κB reporter (KappaBle) mice containing a destabilized EGFP, which showed sensitive, dynamic, and faithful monitoring of NF-κB transcriptional activity at the single-cell level of various cell types during inflammatory and infectious diseases.
Identifiants
pubmed: 35589985
doi: 10.1038/s41385-022-00525-8
pii: S1933-0219(22)00090-3
pmc: PMC9259492
doi:
Substances chimiques
NF-kappa B
0
Transcription Factors
0
Green Fluorescent Proteins
147336-22-9
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
656-667Informations de copyright
© 2022. The Author(s).
Références
Ghosh, S. & Hayden, M. S. New regulators of NF-kappaB in inflammation. Nat. Rev. Immunol. 8, 837–848 (2008).
pubmed: 18927578
doi: 10.1038/nri2423
Sun, S. C. & Ley, S. C. New insights into NF-kappaB regulation and function. Trends Immunol. 29, 469–478 (2008).
pubmed: 18775672
pmcid: 5751948
doi: 10.1016/j.it.2008.07.003
Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).
pubmed: 3091258
doi: 10.1016/0092-8674(86)90346-6
Sen, R. & Baltimore, D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47, 921–928 (1986).
pubmed: 3096580
doi: 10.1016/0092-8674(86)90807-X
Siebenlist, U., Franzoso, G. & Brown, K. Structure, regulation and function of NF-kappa B. Annu. Rev. Cell Biol. 10, 405–455 (1994).
pubmed: 7888182
doi: 10.1146/annurev.cb.10.110194.002201
Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376, 167–170 (1995).
pubmed: 7603567
doi: 10.1038/376167a0
Rudolph, D. et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 14, 854–862 (2000).
pubmed: 10766741
pmcid: 316493
doi: 10.1101/gad.14.7.854
Doi, T. S. et al. RelA-deficient lymphocytes: normal development of T cells and B cells, impaired production of IgA and IgG1 and reduced proliferative responses. J. Exp. Med. 185, 953–961 (1997).
pubmed: 9120401
pmcid: 2196168
doi: 10.1084/jem.185.5.953
Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19, 6351–6360 (2000).
pubmed: 11101508
pmcid: 305873
doi: 10.1093/emboj/19.23.6351
Senftleben, U., Li, Z. W., Baud, V. & Karin, M. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 14, 217–230 (2001).
pubmed: 11290332
doi: 10.1016/S1074-7613(01)00104-2
Beg, A. A., Sha, W. C., Bronson, R. T. & Baltimore, D. Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev. 9, 2736–2746 (1995).
pubmed: 7590249
doi: 10.1101/gad.9.22.2736
Schreiber, S., Nikolaus, S. & Hampe, J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut 42, 477–484 (1998).
pubmed: 9616307
pmcid: 1727068
doi: 10.1136/gut.42.4.477
Caamano, J. H. et al. Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J. Exp. Med. 187, 185–196 (1998).
pubmed: 9432976
pmcid: 2212102
doi: 10.1084/jem.187.2.185
Poljak, L., Carlson, L., Cunningham, K., Kosco-Vilbois, M. H. & Siebenlist, U. Distinct activities of p52/NF-kappa B required for proper secondary lymphoid organ microarchitecture: functions enhanced by Bcl-3. J. Immunol. 163, 6581–6588 (1999).
pubmed: 10586052
Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80, 321–330 (1995).
pubmed: 7834752
doi: 10.1016/0092-8674(95)90415-8
Weih, D. S., Yilmaz, Z. B. & Weih, F. Essential role of RelB in germinal center and marginal zone formation and proper expression of homing chemokines. J. Immunol. 167, 1909–1919 (2001).
pubmed: 11489970
doi: 10.4049/jimmunol.167.4.1909
Yamada, T. et al. Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-kappa B-inducing kinase. J. Immunol. 165, 804–812 (2000).
pubmed: 10878354
doi: 10.4049/jimmunol.165.2.804
De Lorenzi, R., Gareus, R., Fengler, S. & Pasparakis, M. GFP-p65 knock-in mice as a tool to study NF-kappaB dynamics in vivo. Genesis 47, 323–329 (2009).
pubmed: 19263497
doi: 10.1002/dvg.20468
Gross, S. & Piwnica-Worms, D. Real-time imaging of ligand-induced IKK activation in intact cells and in living mice. Nat. Methods 2, 607–614 (2005).
pubmed: 16094386
doi: 10.1038/nmeth779
Carlsen, H., Moskaug, J. O., Fromm, S. H. & Blomhoff, R. In vivo imaging of NF-kappa B activity. J. Immunol. 168, 1441–1446 (2002).
pubmed: 11801687
doi: 10.4049/jimmunol.168.3.1441
Everhart, M. B. et al. Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. J. Immunol. 176, 4995–5005 (2006).
pubmed: 16585596
doi: 10.4049/jimmunol.176.8.4995
Magness, S. T. et al. In vivo pattern of lipopolysaccharide and anti-CD3-induced NF-kappa B activation using a novel gene-targeted enhanced GFP reporter gene mouse. J. Immunol. 173, 1561–1570 (2004).
pubmed: 15265883
doi: 10.4049/jimmunol.173.3.1561
Voll, R. E. et al. NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).
pubmed: 11114380
doi: 10.1016/S1074-7613(00)00067-4
Matsuda, M., Tsukiyama, T., Bohgaki, M., Nonomura, K. & Hatakeyama, S. Establishment of a newly improved detection system for NF-kappaB activity. Immunol. Lett. 109, 175–181 (2007).
pubmed: 17368808
doi: 10.1016/j.imlet.2007.02.007
Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975 (1998).
pubmed: 9857028
doi: 10.1074/jbc.273.52.34970
Guild, B. C., Finer, M. H., Housman, D. E. & Mulligan, R. C. Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo. J. Virol. 62, 3795–3801 (1988).
pubmed: 3418785
pmcid: 253524
doi: 10.1128/jvi.62.10.3795-3801.1988
Nakajima, K., Ikenaka, K., Nakahira, K., Morita, N. & Mikoshiba, K. An improved retroviral vector for assaying promoter activity. Analysis of promoter interference in pIP211 vector. FEBS Lett. 315, 129–133 (1993).
pubmed: 8417968
doi: 10.1016/0014-5793(93)81148-S
Yu, S. F. et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl Acad. Sci. USA 83, 3194–3198 (1986).
pubmed: 3458176
pmcid: 323479
doi: 10.1073/pnas.83.10.3194
Kisielow, J., Kopf, M. & Karjalainen, K. SCART scavenger receptors identify a novel subset of adult gammadelta T cells. J. Immunol. 181, 1710–1716 (2008).
pubmed: 18641307
doi: 10.4049/jimmunol.181.3.1710
Liou, H. C., Sha, W. C., Scott, M. L. & Baltimore, D. Sequential induction of NF-kappa B/Rel family proteins during B-cell terminal differentiation. Mol. Cell Biol. 14, 5349–5359 (1994).
pubmed: 8035813
pmcid: 359054
Miyamoto, S., Chiao, P. J. & Verma, I. M. Enhanced I kappa B alpha degradation is responsible for constitutive NF-kappa B activity in mature murine B-cell lines. Mol. Cell Biol. 14, 3276–3282 (1994).
pubmed: 8164680
pmcid: 358694
Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).
pubmed: 9916792
doi: 10.1038/5007
Chen, C. Y., Peng, W. H., Tsai, K. D. & Hsu, S. L. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 81, 1602–1614 (2007).
pubmed: 17977562
pmcid: 7094354
doi: 10.1016/j.lfs.2007.09.028
Kotanidou, A. et al. Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. Am. J. Respir. Crit. Care Med. 165, 818–823 (2002).
pubmed: 11897650
doi: 10.1164/ajrccm.165.6.2101049
Weng, Z., Patel, A. B., Vasiadi, M., Therianou, A. & Theoharides, T. C. Luteolin inhibits human keratinocyte activation and decreases NF-kappaB induction that is increased in psoriatic skin. PLoS One 9, e90739 (2014).
pubmed: 24587411
pmcid: 3938790
doi: 10.1371/journal.pone.0090739
Yang, Y. et al. Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-kappaB pathway after intracerebral hemorrhage. Biomed. Pharmacother. 126, 110044 (2020).
pubmed: 32114357
doi: 10.1016/j.biopha.2020.110044
de Martin, R. et al. Cytokine-inducible expression in endothelial cells of an I kappa B alpha-like gene is regulated by NF kappa B. EMBO J. 12, 2773–2779 (1993).
pubmed: 8334993
pmcid: 413527
doi: 10.1002/j.1460-2075.1993.tb05938.x
Sun, S. C., Ganchi, P. A., Ballard, D. W. & Greene, W. C. NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).
pubmed: 8096091
doi: 10.1126/science.8096091
Hausmann A. et al. Intercrypt sentinel macrophages tune antibacterial NF-kappaB responses in gut epithelial cells via TNF. J. Exp. Med. 218, e20210862 (2021).
Gerondakis, S. et al. Unravelling the complexities of the NF-kappaB signalling pathway using mouse knockout and transgenic models. Oncogene 25, 6781–6799 (2006).
pubmed: 17072328
doi: 10.1038/sj.onc.1209944
Dabrowski, S. & Kur, J. Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei. Protein Expr. Purif. 14, 131–138 (1998).
pubmed: 9758761
doi: 10.1006/prep.1998.0945
Luche, H., Weber, O., Nageswara Rao, T., Blum, C. & Fehling, H. J. Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur. J. Immunol. 37, 43–53 (2007).
pubmed: 17171761
doi: 10.1002/eji.200636745
Swift, S., Lorens, J., Achacoso, P. & Nolan, G. P. Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. Curr. Protoc. Immunol. Chapter 10, p Unit 10.17C (2001).
Li, F. et al. Gene therapy of Csf2ra deficiency in mouse fetal monocyte precursors restores alveolar macrophage development and function. JCI Insight 7, e152271 (2022).
Keskintepe, L., Norris, K., Pacholczyk, G., Dederscheck, S. M. & Eroglu, A. Derivation and comparison of C57BL/6 embryonic stem cells to a widely used 129 embryonic stem cell line. Transgenic Res. 16, 751–758 (2007).
pubmed: 17701442
doi: 10.1007/s11248-007-9125-8