KappaBle fluorescent reporter mice enable low-background single-cell detection of NF-κB transcriptional activity in vivo.


Journal

Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742

Informations de publication

Date de publication:
04 2022
Historique:
received: 02 09 2021
accepted: 05 05 2022
revised: 25 03 2022
pubmed: 20 5 2022
medline: 9 7 2022
entrez: 19 5 2022
Statut: ppublish

Résumé

Nuclear factor-κB (NF-κB) is a transcription factor with a key role in a great variety of cellular processes from embryonic development to immunity, the outcome of which depends on the fine-tuning of NF-κB activity. The development of sensitive and faithful reporter systems to accurately monitor the activation status of this transcription factor is therefore desirable. To address this need, over the years a number of different approaches have been used to generate NF-κB reporter mice, which can be broadly subdivided into bioluminescence- and fluorescence-based systems. While the former enables whole-body visualization of the activation status of NF-κB, the latter have the potential to allow the analysis of NF-κB activity at single-cell level. However, fluorescence-based reporters frequently show poor sensitivity and excessive background or are incompatible with high-throughput flow cytometric analysis. In this work we describe the generation and analysis of ROSA26 knock-in NF-κB reporter (KappaBle) mice containing a destabilized EGFP, which showed sensitive, dynamic, and faithful monitoring of NF-κB transcriptional activity at the single-cell level of various cell types during inflammatory and infectious diseases.

Identifiants

pubmed: 35589985
doi: 10.1038/s41385-022-00525-8
pii: S1933-0219(22)00090-3
pmc: PMC9259492
doi:

Substances chimiques

NF-kappa B 0
Transcription Factors 0
Green Fluorescent Proteins 147336-22-9

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

656-667

Informations de copyright

© 2022. The Author(s).

Références

Ghosh, S. & Hayden, M. S. New regulators of NF-kappaB in inflammation. Nat. Rev. Immunol. 8, 837–848 (2008).
pubmed: 18927578 doi: 10.1038/nri2423
Sun, S. C. & Ley, S. C. New insights into NF-kappaB regulation and function. Trends Immunol. 29, 469–478 (2008).
pubmed: 18775672 pmcid: 5751948 doi: 10.1016/j.it.2008.07.003
Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).
pubmed: 3091258 doi: 10.1016/0092-8674(86)90346-6
Sen, R. & Baltimore, D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47, 921–928 (1986).
pubmed: 3096580 doi: 10.1016/0092-8674(86)90807-X
Siebenlist, U., Franzoso, G. & Brown, K. Structure, regulation and function of NF-kappa B. Annu. Rev. Cell Biol. 10, 405–455 (1994).
pubmed: 7888182 doi: 10.1146/annurev.cb.10.110194.002201
Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376, 167–170 (1995).
pubmed: 7603567 doi: 10.1038/376167a0
Rudolph, D. et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 14, 854–862 (2000).
pubmed: 10766741 pmcid: 316493 doi: 10.1101/gad.14.7.854
Doi, T. S. et al. RelA-deficient lymphocytes: normal development of T cells and B cells, impaired production of IgA and IgG1 and reduced proliferative responses. J. Exp. Med. 185, 953–961 (1997).
pubmed: 9120401 pmcid: 2196168 doi: 10.1084/jem.185.5.953
Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19, 6351–6360 (2000).
pubmed: 11101508 pmcid: 305873 doi: 10.1093/emboj/19.23.6351
Senftleben, U., Li, Z. W., Baud, V. & Karin, M. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 14, 217–230 (2001).
pubmed: 11290332 doi: 10.1016/S1074-7613(01)00104-2
Beg, A. A., Sha, W. C., Bronson, R. T. & Baltimore, D. Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev. 9, 2736–2746 (1995).
pubmed: 7590249 doi: 10.1101/gad.9.22.2736
Schreiber, S., Nikolaus, S. & Hampe, J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut 42, 477–484 (1998).
pubmed: 9616307 pmcid: 1727068 doi: 10.1136/gut.42.4.477
Caamano, J. H. et al. Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J. Exp. Med. 187, 185–196 (1998).
pubmed: 9432976 pmcid: 2212102 doi: 10.1084/jem.187.2.185
Poljak, L., Carlson, L., Cunningham, K., Kosco-Vilbois, M. H. & Siebenlist, U. Distinct activities of p52/NF-kappa B required for proper secondary lymphoid organ microarchitecture: functions enhanced by Bcl-3. J. Immunol. 163, 6581–6588 (1999).
pubmed: 10586052
Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80, 321–330 (1995).
pubmed: 7834752 doi: 10.1016/0092-8674(95)90415-8
Weih, D. S., Yilmaz, Z. B. & Weih, F. Essential role of RelB in germinal center and marginal zone formation and proper expression of homing chemokines. J. Immunol. 167, 1909–1919 (2001).
pubmed: 11489970 doi: 10.4049/jimmunol.167.4.1909
Yamada, T. et al. Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-kappa B-inducing kinase. J. Immunol. 165, 804–812 (2000).
pubmed: 10878354 doi: 10.4049/jimmunol.165.2.804
De Lorenzi, R., Gareus, R., Fengler, S. & Pasparakis, M. GFP-p65 knock-in mice as a tool to study NF-kappaB dynamics in vivo. Genesis 47, 323–329 (2009).
pubmed: 19263497 doi: 10.1002/dvg.20468
Gross, S. & Piwnica-Worms, D. Real-time imaging of ligand-induced IKK activation in intact cells and in living mice. Nat. Methods 2, 607–614 (2005).
pubmed: 16094386 doi: 10.1038/nmeth779
Carlsen, H., Moskaug, J. O., Fromm, S. H. & Blomhoff, R. In vivo imaging of NF-kappa B activity. J. Immunol. 168, 1441–1446 (2002).
pubmed: 11801687 doi: 10.4049/jimmunol.168.3.1441
Everhart, M. B. et al. Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. J. Immunol. 176, 4995–5005 (2006).
pubmed: 16585596 doi: 10.4049/jimmunol.176.8.4995
Magness, S. T. et al. In vivo pattern of lipopolysaccharide and anti-CD3-induced NF-kappa B activation using a novel gene-targeted enhanced GFP reporter gene mouse. J. Immunol. 173, 1561–1570 (2004).
pubmed: 15265883 doi: 10.4049/jimmunol.173.3.1561
Voll, R. E. et al. NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).
pubmed: 11114380 doi: 10.1016/S1074-7613(00)00067-4
Matsuda, M., Tsukiyama, T., Bohgaki, M., Nonomura, K. & Hatakeyama, S. Establishment of a newly improved detection system for NF-kappaB activity. Immunol. Lett. 109, 175–181 (2007).
pubmed: 17368808 doi: 10.1016/j.imlet.2007.02.007
Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975 (1998).
pubmed: 9857028 doi: 10.1074/jbc.273.52.34970
Guild, B. C., Finer, M. H., Housman, D. E. & Mulligan, R. C. Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo. J. Virol. 62, 3795–3801 (1988).
pubmed: 3418785 pmcid: 253524 doi: 10.1128/jvi.62.10.3795-3801.1988
Nakajima, K., Ikenaka, K., Nakahira, K., Morita, N. & Mikoshiba, K. An improved retroviral vector for assaying promoter activity. Analysis of promoter interference in pIP211 vector. FEBS Lett. 315, 129–133 (1993).
pubmed: 8417968 doi: 10.1016/0014-5793(93)81148-S
Yu, S. F. et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl Acad. Sci. USA 83, 3194–3198 (1986).
pubmed: 3458176 pmcid: 323479 doi: 10.1073/pnas.83.10.3194
Kisielow, J., Kopf, M. & Karjalainen, K. SCART scavenger receptors identify a novel subset of adult gammadelta T cells. J. Immunol. 181, 1710–1716 (2008).
pubmed: 18641307 doi: 10.4049/jimmunol.181.3.1710
Liou, H. C., Sha, W. C., Scott, M. L. & Baltimore, D. Sequential induction of NF-kappa B/Rel family proteins during B-cell terminal differentiation. Mol. Cell Biol. 14, 5349–5359 (1994).
pubmed: 8035813 pmcid: 359054
Miyamoto, S., Chiao, P. J. & Verma, I. M. Enhanced I kappa B alpha degradation is responsible for constitutive NF-kappa B activity in mature murine B-cell lines. Mol. Cell Biol. 14, 3276–3282 (1994).
pubmed: 8164680 pmcid: 358694
Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).
pubmed: 9916792 doi: 10.1038/5007
Chen, C. Y., Peng, W. H., Tsai, K. D. & Hsu, S. L. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 81, 1602–1614 (2007).
pubmed: 17977562 pmcid: 7094354 doi: 10.1016/j.lfs.2007.09.028
Kotanidou, A. et al. Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. Am. J. Respir. Crit. Care Med. 165, 818–823 (2002).
pubmed: 11897650 doi: 10.1164/ajrccm.165.6.2101049
Weng, Z., Patel, A. B., Vasiadi, M., Therianou, A. & Theoharides, T. C. Luteolin inhibits human keratinocyte activation and decreases NF-kappaB induction that is increased in psoriatic skin. PLoS One 9, e90739 (2014).
pubmed: 24587411 pmcid: 3938790 doi: 10.1371/journal.pone.0090739
Yang, Y. et al. Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-kappaB pathway after intracerebral hemorrhage. Biomed. Pharmacother. 126, 110044 (2020).
pubmed: 32114357 doi: 10.1016/j.biopha.2020.110044
de Martin, R. et al. Cytokine-inducible expression in endothelial cells of an I kappa B alpha-like gene is regulated by NF kappa B. EMBO J. 12, 2773–2779 (1993).
pubmed: 8334993 pmcid: 413527 doi: 10.1002/j.1460-2075.1993.tb05938.x
Sun, S. C., Ganchi, P. A., Ballard, D. W. & Greene, W. C. NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).
pubmed: 8096091 doi: 10.1126/science.8096091
Hausmann A. et al. Intercrypt sentinel macrophages tune antibacterial NF-kappaB responses in gut epithelial cells via TNF. J. Exp. Med. 218, e20210862 (2021).
Gerondakis, S. et al. Unravelling the complexities of the NF-kappaB signalling pathway using mouse knockout and transgenic models. Oncogene 25, 6781–6799 (2006).
pubmed: 17072328 doi: 10.1038/sj.onc.1209944
Dabrowski, S. & Kur, J. Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei. Protein Expr. Purif. 14, 131–138 (1998).
pubmed: 9758761 doi: 10.1006/prep.1998.0945
Luche, H., Weber, O., Nageswara Rao, T., Blum, C. & Fehling, H. J. Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur. J. Immunol. 37, 43–53 (2007).
pubmed: 17171761 doi: 10.1002/eji.200636745
Swift, S., Lorens, J., Achacoso, P. & Nolan, G. P. Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. Curr. Protoc. Immunol. Chapter 10, p Unit 10.17C (2001).
Li, F. et al. Gene therapy of Csf2ra deficiency in mouse fetal monocyte precursors restores alveolar macrophage development and function. JCI Insight 7, e152271 (2022).
Keskintepe, L., Norris, K., Pacholczyk, G., Dederscheck, S. M. & Eroglu, A. Derivation and comparison of C57BL/6 embryonic stem cells to a widely used 129 embryonic stem cell line. Transgenic Res. 16, 751–758 (2007).
pubmed: 17701442 doi: 10.1007/s11248-007-9125-8

Auteurs

Luigi Tortola (L)

Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland. luigi.tortola@biol.ethz.ch.

Federica Piattini (F)

Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.

Annika Hausmann (A)

Department of Biology, Institute of Microbiology, ETH, Zurich, Switzerland.

Franziska Ampenberger (F)

Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.

Esther Rosenwald (E)

Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.

Sebastian Heer (S)

Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.

Wolf-Dietrich Hardt (WD)

Department of Biology, Institute of Microbiology, ETH, Zurich, Switzerland.

Thomas Rülicke (T)

Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.

Jan Kisielow (J)

Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland.

Manfred Kopf (M)

Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland. manfred.kopf@ethz.ch.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH