Exome sequencing allows detection of relevant pharmacogenetic variants in epileptic patients.


Journal

The pharmacogenomics journal
ISSN: 1473-1150
Titre abrégé: Pharmacogenomics J
Pays: United States
ID NLM: 101083949

Informations de publication

Date de publication:
12 2022
Historique:
received: 03 06 2021
accepted: 09 05 2022
revised: 28 04 2022
pubmed: 20 5 2022
medline: 23 11 2022
entrez: 19 5 2022
Statut: ppublish

Résumé

Beyond the identification of causal genetic variants in the diagnosis of Mendelian disorders, exome sequencing can detect numerous variants with potential relevance for clinical care. Clinical interventions can thus be conducted to improve future health outcomes for patients and their at-risk relatives, such as predicting late-onset genetic disorders accessible to prevention, treatment or identifying differential drug efficacy and safety. To evaluate the interest of such pharmacogenetic information, we designed an "in house" pipeline to determine the status of 122 PharmGKB (Pharmacogenomics Knowledgebase) variant-drug combinations in 31 genes. This pipeline was applied to a cohort of 90 epileptic patients who had previously an exome sequencing (ES) analysis, to determine the frequency of pharmacogenetic variants. We performed a retrospective analysis of drug plasma concentrations and treatment efficacy in patients bearing at least one relevant PharmGKB variant. For PharmGKB level 1A variants, CYP2C9 status for phenytoin prescription was the only relevant information. Nineteen patients were treated with phenytoin, among phenytoin-treated patients, none were poor metabolizers and four were intermediate metabolizers. While being treated with a standard protocol (10-23 mg/kg/30 min loading dose followed by 5 mg/kg/8 h maintenance dose), all identified intermediate metabolizers had toxic plasma concentrations (20 mg/L). In epileptic patients, pangenomic sequencing can provide information about common pharmacogenetic variants likely to be useful to guide therapeutic drug monitoring, and in the case of phenytoin, to prevent clinical toxicity caused by high plasma levels.

Identifiants

pubmed: 35590072
doi: 10.1038/s41397-022-00280-w
pii: 10.1038/s41397-022-00280-w
doi:

Substances chimiques

Phenytoin 6158TKW0C5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

258-263

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Hesselink D. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Therapeutics. 2003;74:245–54.
doi: 10.1016/S0009-9236(03)00168-1
Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature 2015;526:343–50.
doi: 10.1038/nature15817 pubmed: 26469045 pmcid: 4711261
Sim SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J. 2013;13:1–11.
doi: 10.1038/tpj.2012.45 pubmed: 23089672
Relling MV, Klein TE, Gammal RS, Whirl-Carrillo M, Hoffman JM, Caudle KE. The clinical pharmacogenetics implementation consortium: 10 years later. Clin Pharmacol Ther. 2020;107:171–5.
doi: 10.1002/cpt.1651 pubmed: 31562822
Bank PCD, Caudle KE, Swen JJ, Gammal RS, Whirl‐Carrillo M, Klein TE, et al. Comparison of the guidelines of the clinical pharmacogenetics implementation Consortium and the Dutch pharmacogenetics Working group. Clin Pharm Ther. 2018;103:599–618.
doi: 10.1002/cpt.762
Visscher H, Ross CJD, Rassekh SR, Barhdadi A, Dubé MP, Al-Saloos H, et al. Canadian Pharmacogenomics Network for Drug Safety Consortium Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol. 2012;30:1422–8.
doi: 10.1200/JCO.2010.34.3467 pubmed: 21900104
Picard N, Boyer JC, Etienne‐Grimaldi MC, Barin‐Le GC, Thomas F, Loriot MA. Pharmacogenetics‐based personalized therapy: levels of evidence and recommendations from the French Network of Pharmacogenetics (RNPGx). Therapie. 2017;72:185–92.
doi: 10.1016/j.therap.2016.09.014 pubmed: 28237406
Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharm Ther. 2012;92:414–7.
doi: 10.1038/clpt.2012.96
Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet. 2019;393:689–701.
doi: 10.1016/S0140-6736(18)32596-0 pubmed: 30686584
Orsini A, Zara F, Striano P. Recent advances in epilepsy genetics. Neurosci Lett. 2018;667:4–9.
doi: 10.1016/j.neulet.2017.05.014 pubmed: 28499889
Symonds JD, Zuberi SM, Johnson MR. Advances in epilepsy gene discovery and implications for epilepsy diagnosis and treatment. Curr Opin Neurol. 2017;30:193–9.
doi: 10.1097/WCO.0000000000000433 pubmed: 28212175
Bruel A-L, Levy J, Elenga N, Defo A, Favre A, Lucron H, et al. INTU -related oral-facial-digital syndrome type VI: A confirmatory report. Clin Genet. 2018;93:1205–9.
doi: 10.1111/cge.13238 pubmed: 29451301
Thevenon J, Duffourd Y, Masurel-Paulet A, Lefebvre M, Feillet F, El Chehadeh-Djebbar S, et al. Diagnostic odyssey in severe neurodevelopmental disorders: toward clinical whole-exome sequencing as a first-line diagnostic test. Clin Genet. 2016;89:700–7.
doi: 10.1111/cge.12732 pubmed: 26757139
Bruel A-L, Nambot S, Quéré V, Vitobello A, Thevenon J, et al. Increased diagnostic and new genes identification outcome using research reanalysis of singleton exome sequencing. Eur J Hum Genet. 2019;27:1519–31.
doi: 10.1038/s41431-019-0442-1 pubmed: 31231135 pmcid: 6777617
Cousin MA, Matey ET, Blackburn PR, Boczek NJ, McAllister TM, Kruisselbrink TM, et al. Pharmacogenomic findings from clinical whole exome sequencing of diagnostic odyssey patients. Mol Genet Genom Med. 2017;5:269–79.
doi: 10.1002/mgg3.283
Blom S. trigeminal neuralgia: its treatment with a new anticonvulsant drug (G-32883). Lancet. 1962;279:839–40.
doi: 10.1016/S0140-6736(62)91847-0
Arif H, Buchsbaum R, Weintraub D, Koyfman S, Salas-Humara C, Bazil CW, et al. Comparison and predictors of rash associated with 15 antiepileptic drugs. Neurology. 2007;68:1701–9.
doi: 10.1212/01.wnl.0000261917.83337.db pubmed: 17502552
Karnes JH, Rettie AE, Somogyi AA, Huddart R, Fohner AE, Formea CM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C9 and HLA‐B Genotypes and Phenytoin Dosing: 2020 Update. Clin. Pharmacol. Ther. 2020;96:542–8.
Locharernkul C, Loplumlert J, Limotai C, Korkij W, Desudchit T, Tongkobpetch S, et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia. 2008;49:2087–91.
doi: 10.1111/j.1528-1167.2008.01719.x pubmed: 18637831
Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. A marker for Stevens–Johnson syndrome. Nature. 2004;428:486.
doi: 10.1038/428486a pubmed: 15057820
Anzenbacher P, Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics: CMLS. Cell Mol Life Sci. 2001;58:737–47.
doi: 10.1007/PL00000897 pubmed: 11437235
Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA. Identification of a null allele of CYP2C9 in an African–American exhibiting toxicity to phenytoin. Pharmacogenetics Genomics. 2001;11:803–8.
doi: 10.1097/00008571-200112000-00008
Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5:6–13.
doi: 10.1038/sj.tpj.6500285 pubmed: 15492763
Karnes JH, Rettie AE, Somogyi AA, Huddart R, Fohner AE, Formea CM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C9 and HLA-B Genotypes and Phenytoin Dosing: 2020 Update. Clin Pharmacol Therap. 2020;109:302–9.
doi: 10.1002/cpt.2008
Thauvin-Robinet C, Thevenon J, Nambot S, Delanne J, Kuentz P, Bruel AL, et al. Secondary actionable findings identified by exome sequencing: expected impact on the organisation of care from the study of 700 consecutive tests. Eur J Hum Genet. 2019;27:1197–214.
doi: 10.1038/s41431-019-0384-7 pubmed: 31019283 pmcid: 6777608
Ruden DM, Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, et al. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front Gene. 2012;3:35.
Ka S, Lee S, Hong J, Cho Y, Sung J, Kim HN, et al. HLAscan: genotyping of the HLA region using next-generation sequencing data. BMC Bioinforma. 2017;18:1–11.
doi: 10.1186/s12859-017-1671-3
Giancarlo GM, Venkatakrishnan K, Granda BW, von Moltke LL, Greenblatt DJ. Relative contributions of CYP2C9 and 2C19 to phenytoin 4-hydroxylation in vitro: inhibition by sulfaphenazole, omeprazole, and ticlopidine. Eur J Clin Pharm. 2001;57:31–36.
doi: 10.1007/s002280100268
Bajpai M, Roskos LK, Shen DD, Levy RH. Roles of cytochrome P4502C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite. Drug Metab Dispos. 1996;24:1401–3.
pubmed: 8971149
van der Weide J, Steijns LS, van Weelden MJ, de Haan K. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics. 2001;11:87–91.
Kudo T, Endo Y, Taguchi R, Yatsu M, Ito K. Metronidazole reduces the expression of cytochrome P450 enzymes in HepaRG cells and cryopreserved human hepatocytes. Xenobiotica. 2015;45:413–9.
doi: 10.3109/00498254.2014.990948 pubmed: 25470432
Fohner AE, Ranatunga DK, Thai KK, Lawson BL, Rischx N, Oni-Orisan A, et al. Assessing the clinical impact of CYP2C9 pharmacogenetic variation on phenytoin prescribing practice and patient response in an integrated health system. Pharmacogenet Genomics. 2019;29:192–9.
doi: 10.1097/FPC.0000000000000383 pubmed: 31461080 pmcid: 6989102
Dorado P, López-Torres E, Peñas-Lledó EM, Martínez-Antón J, Llerena A. Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms. Pharmacogenomics J. 2013;13:359–61.
doi: 10.1038/tpj.2012.19 pubmed: 22641027
Cresteil T, Beaune P, Kremers P, Celier C, Guengerich FP, Leroux J-P. Immunoquantification of epoxide hydrolase and cytochrome P-450 isozymes in fetal and adult human liver microsomes. Eur J Biochem. 1985;151:345–50.
doi: 10.1111/j.1432-1033.1985.tb09107.x pubmed: 2411555
Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG. et al. Developmental Expression of Human Hepatic CYP2C9 and CYP2C19. J Pharm Exp Ther. 2004;308:965–74.
doi: 10.1124/jpet.103.060137
McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl J Med. 2011;364:1134–43.
doi: 10.1056/NEJMoa1013297 pubmed: 21428769 pmcid: 3113609
Yip VL, Marson AG, Jorgensen AL, Pirmohamed M, Alfirevic A. HLA genotype and carbamazepine-induced cutaneous adverse drug reactions: a systematic review. Clin Pharm Ther. 2012;92:757–65.
doi: 10.1038/clpt.2012.189
Zhou Y, Krebs K, Milani L, Lauschke VM. Global Frequencies of Clinically Important HLA Alleles and Their Implications For the Cost‐Effectiveness of Preemptive Pharmacogenetic Testing. Clin Pharmacol Ther. 2021;109:160–74.
doi: 10.1002/cpt.1944 pubmed: 32535895
Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17:444–51.
doi: 10.1038/gim.2014.122 pubmed: 25232854

Auteurs

Simon Verdez (S)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France. simon.verdez@chu-dijon.fr.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France. simon.verdez@chu-dijon.fr.

Quentin Thomas (Q)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.

Philippine Garret (P)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.
Laboratoire CERBA, Saint-Ouen l'Aumone, France.

Céline Verstuyft (C)

Université Paris-Saclay, Inserm, CESP, Team MOODS, Faculté de médecine, 94270, Le Kremlin-Bicêtre, Paris, France.

Emilie Tisserant (E)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.

Antonio Vitobello (A)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.

Frédéric Tran Mau-Them (FT)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.

Christophe Philippe (C)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.

Marc Bardou (M)

CHU de Dijon, Centre d'Investigation Clinique, module plurithématique, 21000, Dijon, France.
CHU de Dijon, Centre d'Investigation Clinique, module Epidémiologie Clinique/Essais cliniques, 21000, Dijon, France.

Maxime Luu (M)

CHU de Dijon, Centre d'Investigation Clinique, module plurithématique, 21000, Dijon, France.
CHU de Dijon, Centre d'Investigation Clinique, module Epidémiologie Clinique/Essais cliniques, 21000, Dijon, France.

Abderrahmane Bourredjem (A)

CHU de Dijon, Centre d'Investigation Clinique, module Epidémiologie Clinique/Essais cliniques, 21000, Dijon, France.
Inserm CIC1432, 21000, Dijon, France.

Patrick Callier (P)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.

Christel Thauvin-Robinet (C)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.
Centre de référence maladies rares « déficiences intellectuelles de causes rares », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.
Centre de Référence maladies rares « Anomalies du Développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.

Nicolas Picard (N)

Inserm U1248, service de pharmacologie et toxicologie, université de Limoges, CHU de Limoges, F-87042, Limoges, France.

Laurence Faivre (L)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
Centre de Référence maladies rares « Anomalies du Développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.

Yannis Duffourd (Y)

UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France. yannis.duffourd@u-bourgogne.fr.
Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France. yannis.duffourd@u-bourgogne.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH