Crossing paths: recent insights in the interplay between autophagy and intracellular trafficking in plants.

amphisomes autophagy endomembranes lipids non-canonical autophagy secretory pathway vacuolar degradation vesicle trafficking

Journal

FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157

Informations de publication

Date de publication:
09 2022
Historique:
revised: 09 05 2022
received: 23 03 2022
accepted: 10 05 2022
pubmed: 21 5 2022
medline: 14 9 2022
entrez: 20 5 2022
Statut: ppublish

Résumé

Autophagy fulfills a crucial role in plant cellular homeostasis by recycling diverse cellular components ranging from protein complexes to whole organelles. Autophagy cargos are shuttled to the vacuole for degradation, thereby completing the recycling process. Canonical autophagy requires the lipidation and insertion of ATG8 proteins into double-membrane structures, termed autophagosomes, which engulf the cargo to be degraded. As such, the autophagy pathway actively contributes to intracellular membrane trafficking. Yet, the autophagic process is not fully considered a bona fide component of the canonical membrane trafficking pathway. However, recent findings have started to pinpoint the interconnection between classical membrane trafficking pathways and autophagy. This review details the latest advances in our comprehension of the interplay between these two pathways. Understanding the overlap between autophagy and canonical membrane trafficking pathways is important to illuminate the inner workings of both pathways in plant cells.

Identifiants

pubmed: 35593306
doi: 10.1002/1873-3468.14404
doi:

Substances chimiques

Autophagy-Related Protein 8 Family 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2305-2313

Informations de copyright

© 2022 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Marshall RS, Vierstra RD. Autophagy: the master of bulk and selective recycling. Annu Rev Plant Biol. 2018;69:173-208.
Pu Y, Luo X, Bassham DC. Tor-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana. Front Plant Sci. 2017;8:1-13.
Huang X, Zheng C, Liu F, Yang C, Zheng P, Lu X, et al. Genetic analyses of the arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation. Plant Cell. 2019;31:2973-95.
Aniento F, de Medina Hernández VS, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants get access. Plant Cell. 2022;34:146-73.
Zess EK, Jensen C, Cruz-Mireles N, De la Concepcion JC, Sklenar J, Stephani M, et al. N-terminal β-strand underpins biochemical specialization of an ATG8 isoform. PLoS Biol. 2019;17:1-27.
Cheng L, Zeng Y, Hu S, Zhang N, Cheung KCP, Li B, et al. Systematic prediction of autophagy-related proteins using Arabidopsis thaliana interactome data. Plant J. 2021;105:708-20.
Lai LTF, Yu C, Wong JSK, Lo HS, Benlekbir S, Jiang L, et al. Subnanometer resolution cryo-EM structure of Arabidopsis thaliana ATG9. Autophagy. 2020;16:575-83.
Zhuang X, Chung KP, Cui Y, Lin W, Gao C, Kang B-H, et al. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc Natl Acad Sci USA. 2017;114:E426-35.
Xiong Y, Contento AL, Bassham DC. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 2005;42:535-46.
Kim JH, Lee HN, Huang X, Jung H, Otegui MS, Li F, et al. FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis. Plant Cell. 2022;34:351-73.
Zeng Y, Li B, Ji C, Feng L, Niu F, Deng C, et al. A unique AtSar1D-AtRabD2a nexus modulates autophagosome biogenesis in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2021;118:1-10.
Wun CL, Quan Y, Zhuang X. Recent advances in membrane shaping for plant autophagosome biogenesis. Front Plant Sci. 2020;11:1-9.
Honig A, Avin-Wittenberg T, Ufaz S, Galili G. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell. 2012;24:288-303.
Michaeli S, Avin-Wittenberg T, Galili G. Involvement of autophagy in the direct ER to vacuole protein trafficking route in plants. Front Plant Sci. 2014;5:1-5.
Wang P, Richardson C, Hawes C, Hussey PJ. Arabidopsis NAP1 regulates the formation of autophagosomes. Curr Biol. 2016;26:2060-9.
Stephani M, Picchianti L, Gajic A, Beveridge R, Skarwan E, Hernandez VSM, et al. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. Elife. 2020;9:1-105.
Bao Y, Pu Y, Yu X, Gregory BD, Srivastava R, Howell SH, et al. IRE1B degrades RNAs encoding proteins that interfere with the induction of autophagy by ER stress in Arabidopsis thaliana. Autophagy. 2018;14:1562-73.
Zhang X, Ding X, Marshall RS, Paez-Valencia J, Lacey P, Vierstra RD, et al. Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. Elife. 2020;9:1-27.
Sun J, Wang W, Zheng H. ROOT HAIR DEFECTIVE3 is a receptor for selective autophagy of the endoplasmic reticulum in Arabidopsis. Front Plant Sci. 2022;13:1-8.
Havé M, Luo J, Tellier F, Balliau T, Cueff G, Chardon F, et al. Proteomic and lipidomic analyses of the Arabidopsis atg5 autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition. New Phytol. 2019;223:1461-77.
Bu F, Yang M, Guo X, Huang W, Chen L. Multiple functions of ATG8 family proteins in plant autophagy. Front Cell Dev Biol. 2020;8:1-13.
McLoughlin F, Marshall RS, Ding X, Chatt EC, Kirkpatrick LD, Augustine RC, et al. Autophagy plays prominent roles in amino acid, nucleotide, and carbohydrate metabolism during fixed-carbon starvation in maize. Plant Cell. 2020;32:2699-724.
McLoughlin F, Augustine RC, Marshall RS, Li F, Kirkpatrick LD, Otegui MS, et al. Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover. Nat Plants. 2018;4:1056-70.
De Tito S, Hervás JH, van Vliet AR, Tooze SA. The Golgi as an assembly line to the autophagosome. Trends Biochem Sci. 2020;45:484-96.
Hachez C, Veljanovski V, Reinhardt H, Guillaumot D, Vanhee C, Chaumont F, et al. The Arabidopsis abiotic stress-induced Tspo-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell. 2014;26:4974-90.
Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell. 2011;23:785-805.
Cui Y, He Y, Cao W, Gao J, Jiang L. The multivesicular body and autophagosome pathways in plants. Front Plant Sci. 2018;871:1-10.
Pandey P, Leary AY, Tumtas Y, Savage Z, Dagvadorj B, Duggan C, et al. An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. Elife. 2021;10:1-35.
Nielsen E. The small GTPase superfamily in plants: a conserved regulatory module with novel functions. Annu Rev Plant Biol. 2020;71:247-72.
Minamino N, Ueda T. RAB GTPases and their effectors in plant endosomal transport. Curr Opin Plant Biol. 2019;52:61-8.
Vernoud V, Horton AC, Yang Z, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 2003;131:1191-208.
Speth EB, Imboden L, Hauck P, He SY. Subcellular localization and functional analysis of the arabidopsis GTPase RabE1[W][OA]. Plant Physiol. 2009;149:1824-37.
Zheng H, Camacho L, Wee E, Batoko H, Legen J, Leaver CJ, et al. A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. Plant Cell. 2005;17:2020-36.
Zhao J, Bui MT, Ma J, Künzl F, De La Concepcion JC, Chen Y, et al. Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. bioRxiv. 2022.
Corona AK, Jackson WT. Finding the middle ground for autophagic fusion requirements. Trends Cell Biol. 2018;28:869-81.
Ganesan D, Cai Q. Understanding amphisomes. Biochem J. 2021;478:1959-76.
Takahashi Y, He H, Tang Z, Hattori T, Liu Y, Young MM, et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun. 2018;9:2855.
Sutipatanasomboon A, Herberth S, Alwood EG, Häweker H, Müller B, Shahriari M, et al. Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death. Sci Rep. 2017;7:1-14.
Isono E. ESCRT is a great sealer: non-endosomal function of the ESCRT machinery in membrane repair and autophagy. Plant Cell Physiol. 2021;62:766-74.
Gao C, Zhuang X, Shen J, Jiang L. Plant ESCRT complexes: moving beyond endosomal sorting. Trends Plant Sci. 2017;22:986-98.
Zhuang X, Cui Y, Gao C, Jiang L. Endocytic and autophagic pathways crosstalk in plants. Curr Opin Plant Biol. 2015;28:39-47.
Nagel MK, Kalinowska K, Vogel K, Reynolds GD, Wu Z, Anzenberger F, et al. Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3. Proc Natl Acad Sci USA. 2017;114:E7197-204.
Zhuang X, Wang H, Lam SK, Gao C, Wang X, Cai Y, et al. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell. 2013;25:4596-615.
Sun S, Feng L, Chung KP, Lee KM, Cheung HHY, Luo M, et al. Mechanistic insights into an atypical interaction between ATG8 and SH3P2 in Arabidopsis thaliana. Autophagy. 2021;1-17. https://doi.org/10.1080/15548627.2021.1976965.
Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, et al. A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. bioRxiv. 2021. https://doi.org/10.1101/2021.03.17.435853.
Gao C, Luo M, Zhao Q, Yang R, Cui Y, Zeng Y, et al. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr Biol. 2014;24:2556-63.
Gao C, Zhuang X, Cui Y, Fu X, He Y, Zhao Q, et al. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc Natl Acad Sci USA. 2015;112:1886-91.
Spitzer C, Li F, Buono R, Roschzttardtz H, Chung T, Zhang M, et al. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in arabidopsis. Plant Cell. 2015;27:391-402.
Kulich I, Pečenková T, Sekereš J, Smetana O, Fendrych M, Foissner I, et al. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic. 2013;14:1155-65.
Brillada C, Teh OK, Ditengou FA, Lee CW, Klecker T, Saeed B, et al. Exocyst subunit Exo70B2 is linked to immune signaling and autophagy. Plant Cell. 2021;33:404-19.
Fan L, Li R, Pan J, Ding Z, Lin J. Endocytosis and its regulation in plants. Trends Plant Sci. 2015;20:1-10.
Ji C, Zhou J, Guo R, Lin Y, Kung CH, Hu S, et al. AtNBR1 is a selective autophagic receptor for AtExo70E2 in Arabidopsis. Plant Physiol. 2020;184:777-91.
Acheampong AK, Shanks C, Cheng CY, Eric Schaller G, Dagdas Y, Kieber JJ. EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. Proc Natl Acad Sci U S A. 2020;117:27034-43.
Cvrčková F, Grunt M, Bezvoda R, Hála M, Kulich I, Rawat A, et al. Evolution of the land plant exocyst complexes. Front Plant Sci. 2012;3:1-13.
Lin Y, Zeng Y, Zhu Y, Shen J, Ye H, Jiang L. Plant Rho GTPase signaling promotes autophagy. Mol Plant. 2021;14:905-20.
Arora D, van Damme D. Motif-based endomembrane trafficking. Plant Physiol. 2021;186:221-38.
Wang J, Yperman K, Grones P, Jiang Q, Dragwidge J, Mylle E, et al. Conditional destabilization of the TPLATE complex impairs endocytic internalization. Proc Natl Acad Sci USA. 2021;118:1-8.
Wang P, Pleskot R, Zang J, Winkler J, Wang J, Yperman K, et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with Actin and endocytic machinery. Nat Commun. 2019;10:1-16.
Cadwell K, Debnath J. Beyond self-eating: the control of nonautophagic functions and signaling pathways by autophagyrelated proteins. J Cell Biol. 2018;217:813-22.
Keller MD, Ching KL, Liang FX, Dhabaria A, Tam K, Ueberheide BM, et al. Decoy exosomes provide protection against bacterial toxins. Nature. 2020;579:260-4.
Cui Y, Zhao Q, Gao C, Ding Y, Zeng Y, Ueda T, et al. Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis. Plant Cell. 2014;26:2080-97.
Gao J, Langemeyer L, Kümmel D, Reggiori F, Ungermann C. Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure. Elife. 2018;7:1-18.
Wu X, Ebine K, Ueda T, Qiu QS. AtNHX5 and AtNHX6 are required for the subcellular localization of the SNARE complex that mediates the trafficking of seed storage proteins in Arabidopsis. PLoS One. 2016;11:1-25.
Nieto-Torres JL, Leidal AM, Debnath J, Hansen M. Beyond autophagy: the expanding roles of ATG8 proteins. Trends Biochem Sci. 2021;46:673-86.
Stephani M, Dagdas Y. Plant selective autophagy-still an uncharted territory with a lot of hidden gems. J Mol Biol. 2020;432:63-79.
Noack L, Jaillais Y, Noack L, Jaillais Y, Lipids A, Review A. Functions of anionic lipids in plants. Annu Rev Plant Biol. 2020;71:71-102.
Gomez RE, Lupette J, Chambaud C, Castets J, Ducloy A, Cacas JL, et al. How lipids contribute to autophagosome biogenesis, a critical process in plant responses to stresses. Cell. 2021;10:1272.
Ito Y, Esnay N, Fougère L, Platre MP, Cordelières F, Jaillais Y, et al. Inhibition of very long chain fatty acids synthesis mediates pi3p homeostasis at endosomal compartments. Int J Mol Sci. 2021;22:8450.

Auteurs

Paul Gouguet (P)

Zentrum für Molekular Biologie der Pflanzen, Eberhard Karls Universität, Tübingen, Germany.

Suayib Üstün (S)

Zentrum für Molekular Biologie der Pflanzen, Eberhard Karls Universität, Tübingen, Germany.
Faculty of Biology & Biotechnology, Ruhr-University of Bochum, Germany.

Articles similaires

Animals Dogs Dog Diseases Autophagy Immunohistochemistry
Animals Humans TOR Serine-Threonine Kinases Lupus Erythematosus, Systemic Arthritis, Rheumatoid
Animals Diabetic Nephropathies Mice, Knockout Mice Male
Humans Small Cell Lung Carcinoma RNA, Long Noncoding Sulfonamides Animals

Classifications MeSH