TM9SF1 expression correlates with autoimmune disease activity and regulates antibody production through mTOR-dependent autophagy.
Animals
Humans
TOR Serine-Threonine Kinases
/ metabolism
Lupus Erythematosus, Systemic
/ immunology
Arthritis, Rheumatoid
/ immunology
Autophagy
Mice
Female
Male
Mice, Knockout
Autoantibodies
/ blood
Adult
Antibody Formation
Leukocytes, Mononuclear
/ metabolism
Middle Aged
Membrane Proteins
/ genetics
Signal Transduction
Disease Models, Animal
B-Lymphocytes
/ immunology
Mice, Inbred C57BL
TM9SF1
Antibody
Autophagy
Disease activity
Predictive capability
Rheumatoid arthritis
Systemic lupus erythematosus
Journal
BMC medicine
ISSN: 1741-7015
Titre abrégé: BMC Med
Pays: England
ID NLM: 101190723
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
08
03
2024
accepted:
25
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Transmembrane 9 superfamily member 1 (TM9SF1) is involved in inflammation. Since both inflammatory and autoimmune diseases are linked to immune cells regulation, this study investigated the association between TM9SF1 expression and autoimmune disease activity. As B cell differentiation and autoantibody production exacerbate autoimmune disease, the signaling pathways involved in these processes were explored. Tm9sf1 The Tm9sf1 The primary finding was the identification of the molecular mechanism underlying autophagy regulation in B cells, in which Tm9sf1 knockout was found to modulate mTOR-dependent autophagy to block B cell differentiation into antibody-secreting plasma cells. It was also found that TM9SF1 expression level in PBMCs was an accurate indicator of disease activity in patients with RA and SLE, suggesting its clinical potential for monitoring disease activity in these patients.
Sections du résumé
BACKGROUND
BACKGROUND
Transmembrane 9 superfamily member 1 (TM9SF1) is involved in inflammation. Since both inflammatory and autoimmune diseases are linked to immune cells regulation, this study investigated the association between TM9SF1 expression and autoimmune disease activity. As B cell differentiation and autoantibody production exacerbate autoimmune disease, the signaling pathways involved in these processes were explored.
METHODS
METHODS
Tm9sf1
RESULTS
RESULTS
The Tm9sf1
CONCLUSIONS
CONCLUSIONS
The primary finding was the identification of the molecular mechanism underlying autophagy regulation in B cells, in which Tm9sf1 knockout was found to modulate mTOR-dependent autophagy to block B cell differentiation into antibody-secreting plasma cells. It was also found that TM9SF1 expression level in PBMCs was an accurate indicator of disease activity in patients with RA and SLE, suggesting its clinical potential for monitoring disease activity in these patients.
Identifiants
pubmed: 39482663
doi: 10.1186/s12916-024-03729-w
pii: 10.1186/s12916-024-03729-w
doi:
Substances chimiques
TOR Serine-Threonine Kinases
EC 2.7.11.1
Autoantibodies
0
Membrane Proteins
0
MTOR protein, human
EC 2.7.1.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
502Informations de copyright
© 2024. The Author(s).
Références
Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, et al. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol. 2022;19(11):1215–34.
pubmed: 36220996
doi: 10.1038/s41423-022-00933-7
Frade-Sosa B, Sanmarti R. Neutrophils, neutrophil extracellular traps, and rheumatoid arthritis: an updated review for clinicians. Reumatol Clin (Engl Ed). 2023;19(9):515–26.
pubmed: 37867028
doi: 10.1016/j.reuma.2023.08.001
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, et al. B cells in rheumatoid arthritis: pathogenic mechanisms and treatment prospects. Front Immunol. 2021;12:750753.
pubmed: 34650569
doi: 10.3389/fimmu.2021.750753
Ma K, Du W, Wang X, Yuan S, Cai X, Liu D, et al. Multiple functions of B cells in the pathogenesis of systemic lupus erythematosus. Int J Mol Sci. 2019;20(23):6021.
pubmed: 31795353
doi: 10.3390/ijms20236021
Karmakar U, Vermeren S. Crosstalk between B cells and neutrophils in rheumatoid arthritis. Immunology. 2021;164(4):689–700.
pubmed: 34478165
pmcid: 8561113
doi: 10.1111/imm.13412
Ding X, Ren Y, He X. IFN-I mediates lupus nephritis from the beginning to renal fibrosis. Front Immunol. 2021;12:676082.
pubmed: 33959133
doi: 10.3389/fimmu.2021.676082
Borza DB, Zhang JJ, Beck LH Jr, Meyer-Schwesinger C, Luo W. Mouse models of membranous nephropathy: the road less travelled by. Am J Clin Exp Immunol. 2013;2(2):135–45.
pubmed: 23885331
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32.
pubmed: 31806905
doi: 10.1038/s41591-019-0675-0
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, et al. Autoimmune pre-disease. Autoimmun Rev. 2023;22(2):103236.
pubmed: 36436750
doi: 10.1016/j.autrev.2022.103236
Chluba-de Tapia J, de Tapia M, Jaggin V, Eberle AN. Cloning of a human multispanning membrane protein cDNA: evidence for a new protein family. Gene. 1997;197(1–2):195–204.
pubmed: 9332367
doi: 10.1016/S0378-1119(97)00263-1
He P, Peng Z, Luo Y, Wang L, Yu P, Deng W, et al. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy. 2009;5(1):52–60.
pubmed: 19029833
doi: 10.4161/auto.5.1.7247
Liu K, Jiao YL, Shen LQ, Chen P, Zhao Y, Li MX, et al. A prognostic model based on mRNA expression analysis of esophageal squamous cell carcinoma. Front Bioeng Biotechnol. 2022;10:823619.
pubmed: 35299644
pmcid: 8921680
doi: 10.3389/fbioe.2022.823619
Chen H, Deng Q, Wang W, Tao H, Gao Y. Identification of an autophagy-related gene signature for survival prediction in patients with cervical cancer. J Ovarian Res. 2020;13(1):131.
pubmed: 33160404
pmcid: 7648936
doi: 10.1186/s13048-020-00730-8
Hu YX, Zheng MJ, Zhang WC, Li X, Gou R, Nie X, et al. Systematic profiling of alternative splicing signature reveals prognostic predictor for cervical cancer. J Transl Med. 2019;17(1):379.
pubmed: 31744495
pmcid: 6865056
doi: 10.1186/s12967-019-02140-x
Wang C, Qu B, Wang Z, Ju J, Wang Y, Wang Z, et al. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms. Atherosclerosis. 2015;238(2):201–6.
pubmed: 25528428
doi: 10.1016/j.atherosclerosis.2014.11.027
Zhang C, Li X, Chen J, Zhao L, Wei X, Dong Y, et al. Transcriptome and genome sequencing investigating the molecular characteristics of patients with varicocele infertility. Andrologia. 2022;54(10):e14542.
pubmed: 35922383
doi: 10.1111/and.14542
Pruvot B, Laurens V, Salvadori F, Solary E, Pichon L, Chluba J. Comparative analysis of nonaspanin protein sequences and expression studies in zebrafish. Immunogenetics. 2010;62(10):681–99.
pubmed: 20820770
doi: 10.1007/s00251-010-0472-x
Xiao J, Shen X, Chen H, Ding L, Wang K, Zhai L, et al. TM9SF1 knockdown decreases inflammation by enhancing autophagy in a mouse model of acute lung injury. Heliyon. 2022;8(12):e12092.
pubmed: 36561687
pmcid: 9763745
doi: 10.1016/j.heliyon.2022.e12092
Cai Y, Deng L, Yao J. Analysis and identification of ferroptosis-related diagnostic markers in rheumatoid arthritis. Ann Med. 2024;56(1):2397572.
pubmed: 39221753
pmcid: 11370691
doi: 10.1080/07853890.2024.2397572
Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis. 2010;69(9):1580–8.
pubmed: 20699241
doi: 10.1136/ard.2010.138461
Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European league against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019;71(9):1400–12.
pubmed: 31385462
pmcid: 6827566
doi: 10.1002/art.40930
Greenmyer JR, Stacy JM, Sahmoun AE, Beal JR, Diri E. DAS28-CRP cutoffs for high disease activity and remission are lower than DAS28-ESR in rheumatoid arthritis. ACR Open Rheumatol. 2020;2(9):507–11.
pubmed: 32862564
pmcid: 7504477
doi: 10.1002/acr2.11171
Franklyn K, Lau CS, Navarra SV, Louthrenoo W, Lateef A, Hamijoyo L, et al. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann Rheum Dis. 2016;75(9):1615–21.
pubmed: 26458737
doi: 10.1136/annrheumdis-2015-207726
van Vollenhoven RF, Bertsias G, Doria A, Isenberg D, Morand E, Petri MA, et al. 2021 DORIS definition of remission in SLE: final recommendations from an international task force. Lupus Sci Med. 2021;8(1):e000538.
pubmed: 34819388
pmcid: 8614136
doi: 10.1136/lupus-2021-000538
Xiao J, Shen X, Kou R, Wang K, Zhai L, Ding L, et al. Kirenol inhibits inflammation challenged by lipopolysaccharide through the AMPK-mTOR-ULK1 autophagy pathway. Int Immunopharmacol. 2023;116:109734.
pubmed: 36706589
doi: 10.1016/j.intimp.2023.109734
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.
pubmed: 11846609
doi: 10.1006/meth.2001.1262
Xiao J, Liu W, Chen Y, Deng W. Recombinant human PDCD5 (rhPDCD5) protein is protective in a mouse model of multiple sclerosis. J Neuroinflammation. 2015;12(1):117.
pubmed: 26068104
pmcid: 4474568
doi: 10.1186/s12974-015-0338-0
Shen H, Jin L, Zheng Q, Ye Z, Cheng L, Wu Y, et al. Synergistically targeting synovium STING pathway for rheumatoid arthritis treatment. Bioact Mater. 2023;24:37–53.
pubmed: 36582350
He Y, Ge C, Moreno-Giro A, Xu B, Beusch CM, Sandor K, et al. A subset of antibodies targeting citrullinated proteins confers protection from rheumatoid arthritis. Nat Commun. 2023;14(1):691.
pubmed: 36754962
pmcid: 9908943
doi: 10.1038/s41467-023-36257-x
Postigo J, Iglesias M, Cerezo-Wallis D, Rosal-Vela A, Garcia-Rodriguez S, Zubiaur M, et al. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis. PLoS ONE. 2012;7(3):e33534.
pubmed: 22438945
doi: 10.1371/journal.pone.0033534
Xu WD, Huang Q, Yang C, Li R, Huang AF. GDF-15: a potential biomarker and therapeutic target in systemic lupus erythematosus. Front Immunol. 2022;13:926373.
pubmed: 35911685
doi: 10.3389/fimmu.2022.926373
Wang M, Zhu Z, Lin X, Li H, Wen C, Bao J, et al. Gut microbiota mediated the therapeutic efficacies and the side effects of prednisone in the treatment of MRL/lpr mice. Arthritis Res Ther. 2021;23(1):240.
pubmed: 34521450
doi: 10.1186/s13075-021-02620-w
Zhang N, Zhang Y, Xu J, Wang P, Wu B, Lu S, et al. alpha-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 2023;33(9):679–98.
pubmed: 37443257
doi: 10.1038/s41422-023-00844-w
Deng S, Zhang Y, Wang H, Liang W, Xie L, Li N, et al. ITPRIPL1 binds CD3epsilon to impede T cell activation and enable tumor immune evasion. Cell. 2024;187(9):2305-23 e33.
pubmed: 38614099
doi: 10.1016/j.cell.2024.03.019
Xiao J, Li G, Hu J, Qu L, Ma D, Chen Y. Anti-inflammatory effects of recombinant human PDCD5 (rhPDCD5) in a rat collagen-induced model of arthritis. Inflammation. 2015;38(1):70–8.
pubmed: 25178696
doi: 10.1007/s10753-014-0008-x
Inglis JJ, Simelyte E, McCann FE, Criado G, Williams RO. Protocol for the induction of arthritis in C57BL/6 mice. Nat Protoc. 2008;3(4):612–8.
pubmed: 18388943
doi: 10.1038/nprot.2008.19
Zheng X, Xiao J, Jiang Q, Zheng L, Liu C, Dong C, et al. AKT2 reduces IFNbeta1 production to modulate antiviral responses and systemic lupus erythematosus. EMBO J. 2022;41(6):e108016.
pubmed: 35191555
doi: 10.15252/embj.2021108016
Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. 2021;22(20):10922.
pubmed: 34681582
doi: 10.3390/ijms222010922
Richter P, Macovei LA, Mihai IR, Cardoneanu A, Burlui MA, Rezus E. Cytokines in Systemic Lupus Erythematosus-Focus on TNF-alpha and IL-17. Int J Mol Sci. 2023;24(19):14413.
pubmed: 37833861
doi: 10.3390/ijms241914413
Erikson E, Adori M, Khoenkhoen S, Zhang J, Rorbach J, Castro Dopico X, et al. Impaired plasma cell differentiation associates with increased oxidative metabolism in IkappaBNS-deficient B cells. Cell Immunol. 2022;375:104516.
pubmed: 35413621
doi: 10.1016/j.cellimm.2022.104516
Steinmetz TD, Schlotzer-Schrehardt U, Hearne A, Schuh W, Wittner J, Schulz SR, et al. TFG is required for autophagy flux and to prevent endoplasmic reticulum stress in CH12 B lymphoma cells. Autophagy. 2021;17(9):2238–56.
pubmed: 32910713
doi: 10.1080/15548627.2020.1821546
Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F, Raimondi A, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol. 2013;14(3):298–305.
pubmed: 23354484
doi: 10.1038/ni.2524
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.
Chen J, Na R, Xiao C, Wang X, Wang Y, Yan D, et al. The loss of SHMT2 mediates 5-fluorouracil chemoresistance in colorectal cancer by upregulating autophagy. Oncogene. 2021;40(23):3974–88.
pubmed: 33990700
doi: 10.1038/s41388-021-01815-4
Takahashi H, Suzuki Y, Mohamed JS, Gotoh T, Pereira SL, Alway SE. Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. Exp Gerontol. 2017;92:56–66.
pubmed: 28286171
doi: 10.1016/j.exger.2017.02.075
Lubbers J, Brink M, van de Stadt LA, Vosslamber S, Wesseling JG, van Schaardenburg D, et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann Rheum Dis. 2013;72(5):776–80.
pubmed: 23434571
doi: 10.1136/annrheumdis-2012-202753
Chiche L, Jourde-Chiche N, Whalen E, Presnell S, Gersuk V, Dang K, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol. 2014;66(6):1583–95.
pubmed: 24644022
doi: 10.1002/art.38628
Orange DE, Yao V, Sawicka K, Fak J, Frank MO, Parveen S, et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N Engl J Med. 2020;383(3):218–28.
pubmed: 32668112
doi: 10.1056/NEJMoa2004114
Lewis MJ, Barnes MR, Blighe K, Goldmann K, Rana S, Hackney JA, et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 2019;28(9):2455-70 e5.
pubmed: 31461658
pmcid: 6718830
doi: 10.1016/j.celrep.2019.07.091
Liu W, Zhang S, Wang J. IFN-gamma, should not be ignored in SLE. Front Immunol. 2022;13:954706.
pubmed: 36032079
pmcid: 9399831
doi: 10.3389/fimmu.2022.954706
Kato M. New insights into IFN-gamma in rheumatoid arthritis: role in the era of JAK inhibitors. Immunol Med. 2020;43(2):72–8.
pubmed: 32338187
doi: 10.1080/25785826.2020.1751908
Koper-Lenkiewicz OM, Sutkowska K, Wawrusiewicz-Kurylonek N, Kowalewska E, Matowicka-Karna J. Proinflammatory cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-alpha) single nucleotide polymorphisms in rheumatoid arthritis-a literature review. Int J Mol Sci. 2022;23(4):2106.
Gigante A, Gasperini ML, Afeltra A, Barbano B, Margiotta D, Cianci R, et al. Cytokines expression in SLE nephritis. Eur Rev Med Pharmacol Sci. 2011;15(1):15–24.
pubmed: 21381496
Clarke AJ, Ellinghaus U, Cortini A, Stranks A, Simon AK, Botto M, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis. 2015;74(5):912–20.
pubmed: 24419333
doi: 10.1136/annrheumdis-2013-204343
Chen M, Kodali S, Jang A, Kuai L, Wang J. Requirement for autophagy in the long-term persistence but not initial formation of memory B cells. J Immunol. 2015;194(6):2607–15.
pubmed: 25672753
doi: 10.4049/jimmunol.1403001
Liu CJ, Tang SJ, Chou CC, Sun GH, Sun KH. In vivo suppression of autophagy via lentiviral shRNA targeting atg5 improves lupus-like syndrome. Biomed Res Int. 2020;2020:8959726.
pubmed: 32462028
pmcid: 7212279
Arnold J, Murera D, Arbogast F, Fauny JD, Muller S, Gros F. Autophagy is dispensable for B-cell development but essential for humoral autoimmune responses. Cell Death Differ. 2016;23(5):853–64.
pubmed: 26586568
doi: 10.1038/cdd.2015.149
Wang L, Law HK. The role of autophagy in Lupus Nephritis. Int J Mol Sci. 2015;16(10):25154–67.
pubmed: 26506346
pmcid: 4632796
doi: 10.3390/ijms161025154
Arnolds S, Heise T, Flacke F, Sieber J. Common standards of basal insulin titration in type 2 diabetes. J Diab Sci Technol. 2013;7(3):771–88.
doi: 10.1177/193229681300700323
Conway KL, Kuballa P, Khor B, Zhang M, Shi HN, Virgin HW, et al. ATG5 regulates plasma cell differentiation. Autophagy. 2013;9(4):528–37.
pubmed: 23327930
pmcid: 3627668
doi: 10.4161/auto.23484
Pengo N, Cenci S. The role of autophagy in plasma cell ontogenesis. Autophagy. 2013;9(6):942–4.
pubmed: 23528926
pmcid: 3672309
doi: 10.4161/auto.24399
Azuma K, Ikeda K, Shiba S, Sato W, Horie K, Hasegawa T, et al. EBAG9-deficient mice display decreased bone mineral density with suppressed autophagy. iScience. 2024;27(2):108871.
pubmed: 38313054
pmcid: 10835455
doi: 10.1016/j.isci.2024.108871