TM9SF1 expression correlates with autoimmune disease activity and regulates antibody production through mTOR-dependent autophagy.


Journal

BMC medicine
ISSN: 1741-7015
Titre abrégé: BMC Med
Pays: England
ID NLM: 101190723

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 08 03 2024
accepted: 25 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Transmembrane 9 superfamily member 1 (TM9SF1) is involved in inflammation. Since both inflammatory and autoimmune diseases are linked to immune cells regulation, this study investigated the association between TM9SF1 expression and autoimmune disease activity. As B cell differentiation and autoantibody production exacerbate autoimmune disease, the signaling pathways involved in these processes were explored. Tm9sf1 The Tm9sf1 The primary finding was the identification of the molecular mechanism underlying autophagy regulation in B cells, in which Tm9sf1 knockout was found to modulate mTOR-dependent autophagy to block B cell differentiation into antibody-secreting plasma cells. It was also found that TM9SF1 expression level in PBMCs was an accurate indicator of disease activity in patients with RA and SLE, suggesting its clinical potential for monitoring disease activity in these patients.

Sections du résumé

BACKGROUND BACKGROUND
Transmembrane 9 superfamily member 1 (TM9SF1) is involved in inflammation. Since both inflammatory and autoimmune diseases are linked to immune cells regulation, this study investigated the association between TM9SF1 expression and autoimmune disease activity. As B cell differentiation and autoantibody production exacerbate autoimmune disease, the signaling pathways involved in these processes were explored.
METHODS METHODS
Tm9sf1
RESULTS RESULTS
The Tm9sf1
CONCLUSIONS CONCLUSIONS
The primary finding was the identification of the molecular mechanism underlying autophagy regulation in B cells, in which Tm9sf1 knockout was found to modulate mTOR-dependent autophagy to block B cell differentiation into antibody-secreting plasma cells. It was also found that TM9SF1 expression level in PBMCs was an accurate indicator of disease activity in patients with RA and SLE, suggesting its clinical potential for monitoring disease activity in these patients.

Identifiants

pubmed: 39482663
doi: 10.1186/s12916-024-03729-w
pii: 10.1186/s12916-024-03729-w
doi:

Substances chimiques

TOR Serine-Threonine Kinases EC 2.7.11.1
Autoantibodies 0
Membrane Proteins 0
MTOR protein, human EC 2.7.1.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

502

Informations de copyright

© 2024. The Author(s).

Références

Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, et al. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol. 2022;19(11):1215–34.
pubmed: 36220996 doi: 10.1038/s41423-022-00933-7
Frade-Sosa B, Sanmarti R. Neutrophils, neutrophil extracellular traps, and rheumatoid arthritis: an updated review for clinicians. Reumatol Clin (Engl Ed). 2023;19(9):515–26.
pubmed: 37867028 doi: 10.1016/j.reuma.2023.08.001
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, et al. B cells in rheumatoid arthritis: pathogenic mechanisms and treatment prospects. Front Immunol. 2021;12:750753.
pubmed: 34650569 doi: 10.3389/fimmu.2021.750753
Ma K, Du W, Wang X, Yuan S, Cai X, Liu D, et al. Multiple functions of B cells in the pathogenesis of systemic lupus erythematosus. Int J Mol Sci. 2019;20(23):6021.
pubmed: 31795353 doi: 10.3390/ijms20236021
Karmakar U, Vermeren S. Crosstalk between B cells and neutrophils in rheumatoid arthritis. Immunology. 2021;164(4):689–700.
pubmed: 34478165 pmcid: 8561113 doi: 10.1111/imm.13412
Ding X, Ren Y, He X. IFN-I mediates lupus nephritis from the beginning to renal fibrosis. Front Immunol. 2021;12:676082.
pubmed: 33959133 doi: 10.3389/fimmu.2021.676082
Borza DB, Zhang JJ, Beck LH Jr, Meyer-Schwesinger C, Luo W. Mouse models of membranous nephropathy: the road less travelled by. Am J Clin Exp Immunol. 2013;2(2):135–45.
pubmed: 23885331
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32.
pubmed: 31806905 doi: 10.1038/s41591-019-0675-0
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, et al. Autoimmune pre-disease. Autoimmun Rev. 2023;22(2):103236.
pubmed: 36436750 doi: 10.1016/j.autrev.2022.103236
Chluba-de Tapia J, de Tapia M, Jaggin V, Eberle AN. Cloning of a human multispanning membrane protein cDNA: evidence for a new protein family. Gene. 1997;197(1–2):195–204.
pubmed: 9332367 doi: 10.1016/S0378-1119(97)00263-1
He P, Peng Z, Luo Y, Wang L, Yu P, Deng W, et al. High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy. 2009;5(1):52–60.
pubmed: 19029833 doi: 10.4161/auto.5.1.7247
Liu K, Jiao YL, Shen LQ, Chen P, Zhao Y, Li MX, et al. A prognostic model based on mRNA expression analysis of esophageal squamous cell carcinoma. Front Bioeng Biotechnol. 2022;10:823619.
pubmed: 35299644 pmcid: 8921680 doi: 10.3389/fbioe.2022.823619
Chen H, Deng Q, Wang W, Tao H, Gao Y. Identification of an autophagy-related gene signature for survival prediction in patients with cervical cancer. J Ovarian Res. 2020;13(1):131.
pubmed: 33160404 pmcid: 7648936 doi: 10.1186/s13048-020-00730-8
Hu YX, Zheng MJ, Zhang WC, Li X, Gou R, Nie X, et al. Systematic profiling of alternative splicing signature reveals prognostic predictor for cervical cancer. J Transl Med. 2019;17(1):379.
pubmed: 31744495 pmcid: 6865056 doi: 10.1186/s12967-019-02140-x
Wang C, Qu B, Wang Z, Ju J, Wang Y, Wang Z, et al. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms. Atherosclerosis. 2015;238(2):201–6.
pubmed: 25528428 doi: 10.1016/j.atherosclerosis.2014.11.027
Zhang C, Li X, Chen J, Zhao L, Wei X, Dong Y, et al. Transcriptome and genome sequencing investigating the molecular characteristics of patients with varicocele infertility. Andrologia. 2022;54(10):e14542.
pubmed: 35922383 doi: 10.1111/and.14542
Pruvot B, Laurens V, Salvadori F, Solary E, Pichon L, Chluba J. Comparative analysis of nonaspanin protein sequences and expression studies in zebrafish. Immunogenetics. 2010;62(10):681–99.
pubmed: 20820770 doi: 10.1007/s00251-010-0472-x
Xiao J, Shen X, Chen H, Ding L, Wang K, Zhai L, et al. TM9SF1 knockdown decreases inflammation by enhancing autophagy in a mouse model of acute lung injury. Heliyon. 2022;8(12):e12092.
pubmed: 36561687 pmcid: 9763745 doi: 10.1016/j.heliyon.2022.e12092
Cai Y, Deng L, Yao J. Analysis and identification of ferroptosis-related diagnostic markers in rheumatoid arthritis. Ann Med. 2024;56(1):2397572.
pubmed: 39221753 pmcid: 11370691 doi: 10.1080/07853890.2024.2397572
Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis. 2010;69(9):1580–8.
pubmed: 20699241 doi: 10.1136/ard.2010.138461
Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European league against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019;71(9):1400–12.
pubmed: 31385462 pmcid: 6827566 doi: 10.1002/art.40930
Greenmyer JR, Stacy JM, Sahmoun AE, Beal JR, Diri E. DAS28-CRP cutoffs for high disease activity and remission are lower than DAS28-ESR in rheumatoid arthritis. ACR Open Rheumatol. 2020;2(9):507–11.
pubmed: 32862564 pmcid: 7504477 doi: 10.1002/acr2.11171
Franklyn K, Lau CS, Navarra SV, Louthrenoo W, Lateef A, Hamijoyo L, et al. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann Rheum Dis. 2016;75(9):1615–21.
pubmed: 26458737 doi: 10.1136/annrheumdis-2015-207726
van Vollenhoven RF, Bertsias G, Doria A, Isenberg D, Morand E, Petri MA, et al. 2021 DORIS definition of remission in SLE: final recommendations from an international task force. Lupus Sci Med. 2021;8(1):e000538.
pubmed: 34819388 pmcid: 8614136 doi: 10.1136/lupus-2021-000538
Xiao J, Shen X, Kou R, Wang K, Zhai L, Ding L, et al. Kirenol inhibits inflammation challenged by lipopolysaccharide through the AMPK-mTOR-ULK1 autophagy pathway. Int Immunopharmacol. 2023;116:109734.
pubmed: 36706589 doi: 10.1016/j.intimp.2023.109734
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Xiao J, Liu W, Chen Y, Deng W. Recombinant human PDCD5 (rhPDCD5) protein is protective in a mouse model of multiple sclerosis. J Neuroinflammation. 2015;12(1):117.
pubmed: 26068104 pmcid: 4474568 doi: 10.1186/s12974-015-0338-0
Shen H, Jin L, Zheng Q, Ye Z, Cheng L, Wu Y, et al. Synergistically targeting synovium STING pathway for rheumatoid arthritis treatment. Bioact Mater. 2023;24:37–53.
pubmed: 36582350
He Y, Ge C, Moreno-Giro A, Xu B, Beusch CM, Sandor K, et al. A subset of antibodies targeting citrullinated proteins confers protection from rheumatoid arthritis. Nat Commun. 2023;14(1):691.
pubmed: 36754962 pmcid: 9908943 doi: 10.1038/s41467-023-36257-x
Postigo J, Iglesias M, Cerezo-Wallis D, Rosal-Vela A, Garcia-Rodriguez S, Zubiaur M, et al. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis. PLoS ONE. 2012;7(3):e33534.
pubmed: 22438945 doi: 10.1371/journal.pone.0033534
Xu WD, Huang Q, Yang C, Li R, Huang AF. GDF-15: a potential biomarker and therapeutic target in systemic lupus erythematosus. Front Immunol. 2022;13:926373.
pubmed: 35911685 doi: 10.3389/fimmu.2022.926373
Wang M, Zhu Z, Lin X, Li H, Wen C, Bao J, et al. Gut microbiota mediated the therapeutic efficacies and the side effects of prednisone in the treatment of MRL/lpr mice. Arthritis Res Ther. 2021;23(1):240.
pubmed: 34521450 doi: 10.1186/s13075-021-02620-w
Zhang N, Zhang Y, Xu J, Wang P, Wu B, Lu S, et al. alpha-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 2023;33(9):679–98.
pubmed: 37443257 doi: 10.1038/s41422-023-00844-w
Deng S, Zhang Y, Wang H, Liang W, Xie L, Li N, et al. ITPRIPL1 binds CD3epsilon to impede T cell activation and enable tumor immune evasion. Cell. 2024;187(9):2305-23 e33.
pubmed: 38614099 doi: 10.1016/j.cell.2024.03.019
Xiao J, Li G, Hu J, Qu L, Ma D, Chen Y. Anti-inflammatory effects of recombinant human PDCD5 (rhPDCD5) in a rat collagen-induced model of arthritis. Inflammation. 2015;38(1):70–8.
pubmed: 25178696 doi: 10.1007/s10753-014-0008-x
Inglis JJ, Simelyte E, McCann FE, Criado G, Williams RO. Protocol for the induction of arthritis in C57BL/6 mice. Nat Protoc. 2008;3(4):612–8.
pubmed: 18388943 doi: 10.1038/nprot.2008.19
Zheng X, Xiao J, Jiang Q, Zheng L, Liu C, Dong C, et al. AKT2 reduces IFNbeta1 production to modulate antiviral responses and systemic lupus erythematosus. EMBO J. 2022;41(6):e108016.
pubmed: 35191555 doi: 10.15252/embj.2021108016
Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. 2021;22(20):10922.
pubmed: 34681582 doi: 10.3390/ijms222010922
Richter P, Macovei LA, Mihai IR, Cardoneanu A, Burlui MA, Rezus E. Cytokines in Systemic Lupus Erythematosus-Focus on TNF-alpha and IL-17. Int J Mol Sci. 2023;24(19):14413.
pubmed: 37833861 doi: 10.3390/ijms241914413
Erikson E, Adori M, Khoenkhoen S, Zhang J, Rorbach J, Castro Dopico X, et al. Impaired plasma cell differentiation associates with increased oxidative metabolism in IkappaBNS-deficient B cells. Cell Immunol. 2022;375:104516.
pubmed: 35413621 doi: 10.1016/j.cellimm.2022.104516
Steinmetz TD, Schlotzer-Schrehardt U, Hearne A, Schuh W, Wittner J, Schulz SR, et al. TFG is required for autophagy flux and to prevent endoplasmic reticulum stress in CH12 B lymphoma cells. Autophagy. 2021;17(9):2238–56.
pubmed: 32910713 doi: 10.1080/15548627.2020.1821546
Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F, Raimondi A, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol. 2013;14(3):298–305.
pubmed: 23354484 doi: 10.1038/ni.2524
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.
Chen J, Na R, Xiao C, Wang X, Wang Y, Yan D, et al. The loss of SHMT2 mediates 5-fluorouracil chemoresistance in colorectal cancer by upregulating autophagy. Oncogene. 2021;40(23):3974–88.
pubmed: 33990700 doi: 10.1038/s41388-021-01815-4
Takahashi H, Suzuki Y, Mohamed JS, Gotoh T, Pereira SL, Alway SE. Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. Exp Gerontol. 2017;92:56–66.
pubmed: 28286171 doi: 10.1016/j.exger.2017.02.075
Lubbers J, Brink M, van de Stadt LA, Vosslamber S, Wesseling JG, van Schaardenburg D, et al. The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann Rheum Dis. 2013;72(5):776–80.
pubmed: 23434571 doi: 10.1136/annrheumdis-2012-202753
Chiche L, Jourde-Chiche N, Whalen E, Presnell S, Gersuk V, Dang K, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol. 2014;66(6):1583–95.
pubmed: 24644022 doi: 10.1002/art.38628
Orange DE, Yao V, Sawicka K, Fak J, Frank MO, Parveen S, et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N Engl J Med. 2020;383(3):218–28.
pubmed: 32668112 doi: 10.1056/NEJMoa2004114
Lewis MJ, Barnes MR, Blighe K, Goldmann K, Rana S, Hackney JA, et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 2019;28(9):2455-70 e5.
pubmed: 31461658 pmcid: 6718830 doi: 10.1016/j.celrep.2019.07.091
Liu W, Zhang S, Wang J. IFN-gamma, should not be ignored in SLE. Front Immunol. 2022;13:954706.
pubmed: 36032079 pmcid: 9399831 doi: 10.3389/fimmu.2022.954706
Kato M. New insights into IFN-gamma in rheumatoid arthritis: role in the era of JAK inhibitors. Immunol Med. 2020;43(2):72–8.
pubmed: 32338187 doi: 10.1080/25785826.2020.1751908
Koper-Lenkiewicz OM, Sutkowska K, Wawrusiewicz-Kurylonek N, Kowalewska E, Matowicka-Karna J. Proinflammatory cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-alpha) single nucleotide polymorphisms in rheumatoid arthritis-a literature review. Int J Mol Sci. 2022;23(4):2106.
Gigante A, Gasperini ML, Afeltra A, Barbano B, Margiotta D, Cianci R, et al. Cytokines expression in SLE nephritis. Eur Rev Med Pharmacol Sci. 2011;15(1):15–24.
pubmed: 21381496
Clarke AJ, Ellinghaus U, Cortini A, Stranks A, Simon AK, Botto M, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis. 2015;74(5):912–20.
pubmed: 24419333 doi: 10.1136/annrheumdis-2013-204343
Chen M, Kodali S, Jang A, Kuai L, Wang J. Requirement for autophagy in the long-term persistence but not initial formation of memory B cells. J Immunol. 2015;194(6):2607–15.
pubmed: 25672753 doi: 10.4049/jimmunol.1403001
Liu CJ, Tang SJ, Chou CC, Sun GH, Sun KH. In vivo suppression of autophagy via lentiviral shRNA targeting atg5 improves lupus-like syndrome. Biomed Res Int. 2020;2020:8959726.
pubmed: 32462028 pmcid: 7212279
Arnold J, Murera D, Arbogast F, Fauny JD, Muller S, Gros F. Autophagy is dispensable for B-cell development but essential for humoral autoimmune responses. Cell Death Differ. 2016;23(5):853–64.
pubmed: 26586568 doi: 10.1038/cdd.2015.149
Wang L, Law HK. The role of autophagy in Lupus Nephritis. Int J Mol Sci. 2015;16(10):25154–67.
pubmed: 26506346 pmcid: 4632796 doi: 10.3390/ijms161025154
Arnolds S, Heise T, Flacke F, Sieber J. Common standards of basal insulin titration in type 2 diabetes. J Diab Sci Technol. 2013;7(3):771–88.
doi: 10.1177/193229681300700323
Conway KL, Kuballa P, Khor B, Zhang M, Shi HN, Virgin HW, et al. ATG5 regulates plasma cell differentiation. Autophagy. 2013;9(4):528–37.
pubmed: 23327930 pmcid: 3627668 doi: 10.4161/auto.23484
Pengo N, Cenci S. The role of autophagy in plasma cell ontogenesis. Autophagy. 2013;9(6):942–4.
pubmed: 23528926 pmcid: 3672309 doi: 10.4161/auto.24399
Azuma K, Ikeda K, Shiba S, Sato W, Horie K, Hasegawa T, et al. EBAG9-deficient mice display decreased bone mineral density with suppressed autophagy. iScience. 2024;27(2):108871.
pubmed: 38313054 pmcid: 10835455 doi: 10.1016/j.isci.2024.108871

Auteurs

Juan Xiao (J)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.

Zhenwang Zhao (Z)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.

Fengqiao Zhou (F)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.

Jinsong Xiong (J)

Gucheng People's Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441700, China.

Zean Yang (Z)

Gucheng People's Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441700, China.

Baoxian Gong (B)

Gucheng People's Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441700, China.

Lei Xiang (L)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.

Mingming Liu (M)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.

Fengsheng Cao (F)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.

Hong Xiao (H)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.

Huabo Chen (H)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China. chenhb@hbuas.edu.cn.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China. chenhb@hbuas.edu.cn.

Anbing Zhang (A)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China. xf_zab@sina.com.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China. xf_zab@sina.com.

Ke Wang (K)

Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China. wangk201912@hbuas.edu.cn.
Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China. wangk201912@hbuas.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH