Mean-field theory of social laser.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 05 2022
20 05 2022
Historique:
received:
29
03
2022
accepted:
09
05
2022
entrez:
20
5
2022
pubmed:
21
5
2022
medline:
25
5
2022
Statut:
epublish
Résumé
In this work we suggest a novel paradigm of social laser (solaser), which can explain such Internet inspired social phenomena as echo chambers, reinforcement and growth of information cascades, enhancement of social actions under strong mass media operation. The solaser is based on a well-known in quantum physics laser model of coherent amplification of the optical field. Social networks are at the core of the solaser model; we define them by means of a network model possessing power-law degree distribution. In the solaser the network environment plays the same role as the gain medium has in a physical laser device. We consider social atoms as decision making agents (humans or even chat bots), which possess two (mental) states and occupy the nodes of a network. The solaser establishes communication between the agents as absorption and spontaneous or stimulated emission of socially actual information within echo chambers, which mimic an optical resonator of a convenient (physical) laser. We have demonstrated that social lasing represents the second order nonequilibrium phase transition, which evokes the release of coherent socially stimulated information field represented with the order parameter. The solaser implies the formation of macroscopic social polarization and results in a huge social impact, which is realized by viral information cascades occurring in the presence of population imbalance (social bias). We have shown that decision making agents follow an adiabatically time dependent mass media pump, which acts in the network community reproducing various reliable scenarios for information cascade evolution. We have also shown that in contrast to physical lasers, due to node degree peculiarities, the coupling strength of decision making agents with the network may be enhanced [Formula: see text] times. It leads to a large increase of speed, at which a viral message spreads through a social media. In this case, the mass media pump supports additional reinforcement and acceleration of cascade growth. We have revealed that the solaser model in some approximations possesses clear links with familiar Ising and SIS (susceptible-infected-susceptible) models typically used for evaluating a social impact and information growth, respectively. However, the solaser paradigm can serve as a new platform for modelling temporal social events, which originate from "microscopic" (quantum-like) processes occurring in the society. Our findings open new perspectives for interdisciplinary studies of distributed intelligence agents behavior associated with information exchange and social impact.
Identifiants
pubmed: 35595814
doi: 10.1038/s41598-022-12327-w
pii: 10.1038/s41598-022-12327-w
pmc: PMC9123015
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8566Informations de copyright
© 2022. The Author(s).
Références
Lamb, W. E., Schleich, W. P., Scully, M. O. & Townes, C. H. Laser physics: Quantum controversy in action. Rev. Mod. Phys. 71, S263 (1999).
doi: 10.1103/RevModPhys.71.S263
Bagaev, S. et al. Beginning of the laser era in the ussr (collected papers) (LPI, Moscow, 2010).
Milonni, P. W. & Eberly, J. H. Laser Resonators and Gaussian Beams 1st edn. (Laser Physics, 2010).
Blood, P. Quantum Confined Laser Devices: Optical gain and recombination in semiconductors Vol. 23 (OUP Oxford, 2015).
doi: 10.1093/acprof:oso/9780199644513.001.0001
Robins, N. P., Altin, P. A., Debs, J. E. & Close, J. D. Atom lasers: Production, properties and prospects for precision inertial measurement. Phys. Rep. 529, 265–269 (2013).
doi: 10.1016/j.physrep.2013.03.006
Scully, M. O. & Lamb, W. E. Jr. Quantum theory of an optical maser. i. general theory. Phys. Rev. 159, 208 (1967).
doi: 10.1103/PhysRev.159.208
Lax, M. Fluctuation and coherence phenomena in classical and quantum physics. Part of Proceedings, 9th Brandeis University Summer Institute in Theoretical Physics : Statistical physics, phase transitions and superfluidity (1968).
Haken, H. Laser Light Dynamics Vol. 2 (North-Holland, 1985).
Glauber, R. J. Quantum Theory of Optical Coherence: Selected Papers and Lectures Vol. 2 (John Wiley and Sons, 2007).
Arecchi, F. T., Berné, A. & Bulamacchi, P. High-order fluctuations in a single-mode laser field. Phys. Rev. Lett. 16, 32 (1966).
doi: 10.1103/PhysRevLett.16.32
Haken, H., Risken, H. & Weidlich, W. Quantum mechanical solutions of the laser masterequation. Z. Angew. Phys. 206, 355–368 (1967).
Sargent, M., Scully, M. O. & Lamb, W. E. Buildup of laser oscillations from quantum noise. Appl. Opt. 9, 2423–2427 (1970).
doi: 10.1364/AO.9.002423
Rice, P. R. & Carmichael, H. J. Photon statistics of a cavity-qed laser: A comment on the laser-phase-transition analogy. Phys. Rev. A 50, 4318 (1994).
pubmed: 9911408
doi: 10.1103/PhysRevA.50.4318
Chaikin, P. M., Lubensky, T. C. & Witten, T. A. Principles of Condensed Matter Physics Vol. 10 (Cambridge University Press, 1995).
doi: 10.1017/CBO9780511813467
Lifshitz, E. M. & Pitaevskii, L. P. Statistical Physics: Theory of the Condensed State Vol. 9 (Elsevier, 2013).
Graham, R. & Haken, H. Laserlight-first example of a second-order phase transition far away from thermal equilibrium. Z. Angew. Phys. 237, 31–46 (1970).
DeGiorgio, V. & Scully, M. O. Analogy between the laser threshold region and a second-order phase transition. Phys. Rev. A 2, 1170 (1970).
doi: 10.1103/PhysRevA.2.1170
Kessler, E. M. et al. Dissipative phase transition in a central spin system. Phys. Rev. A 86, 012116 (2012).
doi: 10.1103/PhysRevA.86.012116
Zel’Dovich, Y. B. & Levich, E. V. Bose condensation and shock waves in photon spectra. Sov. Phys. JETP 28, 1287 (1969).
Hepp, K. & Lieb, E. H. On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model. Ann. Phys. 76, 360–404 (1973).
doi: 10.1016/0003-4916(73)90039-0
Wang, Y. K. & Hioe, F. T. Phase transition in the Dicke model of superradiance. Phys. Rev. A 7, 831 (1973).
doi: 10.1103/PhysRevA.7.831
Herrmann, F. & Wurfel, P. Light with nonzero chemical potential. Am. J. Phys. 73, 717–721 (2005).
doi: 10.1119/1.1904623
Herrmann, F. & Wurfel, P. The elusive chemical potential. Am. J. Phys. 69, 423–434 (2001).
doi: 10.1119/1.1336839
Leff, H. S. Fluctuations in particle number for a photon gas. Am. J. Phys. 83, 362–365 (2015).
doi: 10.1119/1.4904322
Kocharovsky, V. V., Scully, M. O., Zhu, S. Y. & Zubairy, M. S. Condensation of n bosons. ii. nonequilibrium analysis of an ideal bose gas and the laser phase-transition analogy. Phys. Rev. A 61, 023609 (2000).
doi: 10.1103/PhysRevA.61.023609
Snoke, D. Polariton condensation and lasing. In Exciton Polaritons in Microcavities 307–327 (Springer, 2012).
doi: 10.1007/978-3-642-24186-4_12
Chestnov, I. Y., Alodjants, A. P. & Arakelian, S. M. Lasing and high-temperature phase transitions in atomic systems with dressed-state polaritons. Phys. Rev. A 88, 063834 (2013).
doi: 10.1103/PhysRevA.88.063834
Kruchkov, A. & Slyusarenko, Y. Bose-einstein condensation of photons in an ideal atomic gas. Phys. Rev. A 88, 013615 (2013).
doi: 10.1103/PhysRevA.88.013615
Kirton, P. & Keeling, J. Nonequilibrium model of photon condensation. Phys. Rev. Lett. 111, 100404 (2013).
pubmed: 25166637
doi: 10.1103/PhysRevLett.111.100404
Sobyanin, D. N. Bose–Einstein condensation of light: General theory. Phys. Rev. E 88, 022132 (2013).
doi: 10.1103/PhysRevE.88.022132
Ketterle, W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131 (2002).
doi: 10.1103/RevModPhys.74.1131
Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489 (2010).
doi: 10.1103/RevModPhys.82.1489
Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).
pubmed: 21107426
doi: 10.1038/nature09567
Demokritov, V. E. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).
pubmed: 17006509
doi: 10.1038/nature05117
Zhang, Z., Agarwal, G. S. & Scully, M. O. Quantum fluctuations in the fröhlich condensate of molecular vibrations driven far from equilibrium. Phys. Rev. Lett. 122, 158101 (2019).
pubmed: 31050540
doi: 10.1103/PhysRevLett.122.158101
Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).
pubmed: 12917698
doi: 10.1038/nature01939
Miller, R. et al. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. B: At. Mol. Opt. Phys. 38, S551 (2005).
doi: 10.1088/0953-4075/38/9/007
Bianconi, G. & Barabási, A. L. Bose–Einstein condensation in complex networks. Phys. Rev. Lett. 86, 5632 (2001).
pubmed: 11415319
doi: 10.1103/PhysRevLett.86.5632
Park, J. & Newman, M. E. Statistical mechanics of networks. Phys. Rev. E 70, 066117 (2004).
doi: 10.1103/PhysRevE.70.066117
Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275 (2008).
doi: 10.1103/RevModPhys.80.1275
Parisi, G. An introduction to the statistical mechanics of amorphous systems. Field Theory Disord. Simul. 49, 195 (1992).
doi: 10.1142/9789812799050_0012
Schmidt, E. & Cohen, J. The New Digital Age: Reshaping the Future of People, Nations and Business (Hachette, 2013).
Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
doi: 10.1103/PhysRevE.69.026113
Barabási, A. L. Network Science. (Cambridge University Press, 2016).
Holyst, J. A. Cyberemotions: Collective Emotions in Cyberspace (Springer, 2016).
Cheng, J., Adamic, L., Dow, P. A., Kleinberg, J. M. & Leskovec, J. Can cascades be predicted? Proceedings of the 23rd international conference on World wide web 925–936 (2014).
Krastev, I. In mistrust we trust: Can democracy survive when we don’t trust our leaders? TED Conferences (2013).
Denselow, J. Why it’s still kicking off everywhere: The new global revolutions. Int. Affairs (Lond.) 88, 407–408 (2012).
Hemsley, J. Studying the viral growth of a connective action network using information event signatures. First Monday 21, 2 (2016).
Khrennikov, A. Social laser: Action amplification by stimulated emission of social energy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150094 (2016).
doi: 10.1098/rsta.2015.0094
Khrennikov, A. Y. Social Laser (Jenny Stanford Publishing, 2020).
doi: 10.1201/9780367817206
Khrennikov, A., Toffano, Z. & Dubois, F. Concept of information laser: From quantum theory to behavioural dynamics. Eur. Phys. J. Sp. Top. 227, 2133–2153 (2019).
doi: 10.1140/epjst/e2018-800027-6
Khrennikov, A., Alodjants, A., Trofimova, A. & Tsarev, D. On interpretational questions for quantum-like modeling of social lasing. Entropy 20, 921 (2018).
pmcid: 7512507
doi: 10.3390/e20120921
Baumann, F., Lorenz-Spreen, P., Sokolov, I. M. & Starnini, M. Modeling echo chambers and polarization dynamics in social networks. Phys. Rev. Lett. 124, 048301 (2020).
pubmed: 32058741
doi: 10.1103/PhysRevLett.124.048301
Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi, W. & Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci. 118, 2 (2021).
doi: 10.1073/pnas.2023301118
Tsarev, D., Trofimova, A., Alodjants, A. & Khrennikov, A. Phase transitions, collective emotions and decision-making problem in heterogeneous social systems. Sci. Rep. 9, 1–13 (2019).
doi: 10.1038/s41598-019-54296-7
Weidlich, W. Fokker-Planck Equation Treatment of Interacting Social Groups 269–279 (In Synergetics Vieweg + Teubner Verlag, 1973).
Pastor-Satorras, R. & Vespignani, A. Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, 2004).
doi: 10.1017/CBO9780511610905
Weidlich, W. Mean field solution of the ising model on a Barabási-Albert network. Phys. Lett. A 303, 166–168 (2002).
doi: 10.1016/S0375-9601(02)01232-X
Lee, S. H., Ha, M., Jeong, H., Noh, J. D. & Park, H. Critical behavior of the ising model in annealed scale-free networks. Phys. Rev. E 80, 051127 (2009).
doi: 10.1103/PhysRevE.80.051127
Stauffer, D. Social applications of two-dimensional ising models. Am. J. Phys. 76, 470–473 (2008).
doi: 10.1119/1.2779882
Holovatch, Y. Order, Disorder And Criticality-Advanced Problems Of Phase Transition Theory Vol. 5 (World Scientific, 2017).
García-Diaz, C. Serge Galam: Sociophysics: A physicist’s modeling of psycho-political phenomena. J. Artif. Soc. Soc. Simul. 16, 2 (2013).
Kohring, G. A. Ising models of social impact: the role of cumulative advantage. J. Phys. I(6), 301–308 (1996).
Holyst, J. A., Kacperski, K. & Schweitzer, F. Phase transitions in social impact models of opinion formation. Phys. A 285, 199–210 (2000).
doi: 10.1016/S0378-4371(00)00282-X
Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015).
doi: 10.1103/RevModPhys.87.925
Ostilli, M. et al. Statistical mechanics of rumour spreading in network communities. Proc. Comput. Sci. 1, 2331–2339 (2010).
doi: 10.1016/j.procs.2010.04.262
Mello, I. F., Squillante, L., Gomes, G. O., Seridonio, A. C. & de Souza, M. Epidemics, the ising-model and percolation theory: A comprehensive review focused on COVID-19. Phys. A 573, 125963 (2021).
doi: 10.1016/j.physa.2021.125963
Bazhenov, A. Y., Tsarev, D. V. & Alodjants, A. P. Mean-field theory of superradiant phase transition in complex networks. Phys. Rev. E 103, 062309 (2021).
pubmed: 34271635
doi: 10.1103/PhysRevE.103.062309
Guleva, V. et al. Emerging complexity in distributed intelligent systems. Entropy 22, 1437 (2020).
pmcid: 7766450
doi: 10.3390/e22121437
Vitiello, G. Dissipation and memory capacity in the quantum brain model. Int. J. Mod. Phys. B 9, 973 (1995).
doi: 10.1142/S0217979295000380
Vitiello, G. My double unveiled: The dissipative quantum model of brain (Advances in Consciousness Research, John Benjamins Publishing Company, 2001).
Zhoua, B., Meng, X. & Stanley, E. Power-law distribution of degree-degree distance: A better representation of the scale-free property of complex networks. PNAS 117, 14812 (2020).
doi: 10.1073/pnas.1918901117
Dragulescu, A. & Yakovenko, V. M. Statistical mechanics of money. Eur. Phys. J. B Condens. Matter Complex Syst. 17, 723–729 (2000).
doi: 10.1007/s100510070114
Chakraborti, A. & Chakrabarti, B. K. Statistical mechanics of money: How saving propensity affects its distribution. Eur. Phys. J. B Condens. Matter Complex Syst. 17, 167–170 (2000).
doi: 10.1007/s100510070173
Mimkes, J. A thermodynamic formulation of social science. Econophys. Sociophys. 2, 279–309 (2006).
doi: 10.1002/9783527610006.ch10
Svelto, O. & Hanna, D. C. Principles of Lasers Vol. 4 (Plenum Press, 1998).
doi: 10.1007/978-1-4757-6266-2
Scully, M. S. & Zubairy, M. Quantum Optics (Cambridge Univ Press, 1997).
doi: 10.1017/CBO9780511813993
Bagarello, F., Basieva, I. & Khrennikov, A. Quantum field inspired model of decision making: Asymptotic stabilization of belief state via interaction with surrounding mental environment. J. Math. Psychol. 82, 159–168 (2018).
doi: 10.1016/j.jmp.2017.10.002
Haven, E. The Variation of Financial Arbitrage via the Use of an Information Wave Function. Int. J. Theor. Phys. 47, 193 (2008).
doi: 10.1016/j.physa.2011.11.042
Khrennikov, A. Ubiquitous Quantum Structure: From Psychology to Finances (Springer, 2010).
doi: 10.1007/978-3-642-05101-2
Busemeyer, J. R. & Bruza, P. D. Quantum Models of Cognition and Decision Vol. 4 (Cambridge University Press, 2012).
doi: 10.1017/CBO9780511997716
Haven, E., Khrennikov, A. Y. & Robinson, T. R. Quantum Methods in Social Science: A First Course (World Scientific Publishing Company, 2017).
doi: 10.1142/q0080
Busemeyer, J. R. & Wang, Z. What is quantum cognition, and how is it applied to psychology?. Curr. Dir. Psychol. Sci. 24, 163–169 (2015).
doi: 10.1177/0963721414568663
Plotnitsky, A. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?. Phys. Scr. T163, 014011 (2014).
doi: 10.1088/0031-8949/2014/T163/014011
Surov, I. A., Pilkevich, S. V., Alodjants, A. P. & Khmelevsky, S. V. Quantum phase stability in human cognition. Front. Psychol. 10, 929 (2019).
pubmed: 31114524
pmcid: 6503077
doi: 10.3389/fpsyg.2019.00929
Wichert, A., Moreira, C. & Bruza, P. Balanced quantum-like bayesian networks. Front. Psychol. 22, 170 (2020).
Lawless, W. Quantum-like interdependence theory advances autonomous human–machine teams (a-hmts). Entropy 22, 1227 (2020).
pmcid: 7711756
doi: 10.3390/e22111227
Tonello, L. & Grigolini, P. Approaching bounded rationality: From quantum probability to criticality. Entropy 23, 745 (2021).
pubmed: 34199289
pmcid: 8231942
doi: 10.3390/e23060745
Quattrociocchi, W., Scala, A. & Sunstein, C. R. Echo chambers on facebook. SSRN 2795110 (2016).
Symonds, J. How long do they last? https://the-refinery.io/blog/how-long-does-a-social-media-post-last. (2021).
Mikhailov, A. P., Petrov, A. P., Pronchev, G. B. & Proncheva, O. G. Modeling a decrease in public attention to a past one-time political event. Doklady Math. 97, 247–249 (2018).
doi: 10.1134/S1064562418030158
Khrennikov, A. Social laser model for the bandwagon effect: Generation of coherent information waves. Entropy 22, 559 (2020).
pmcid: 7517081
doi: 10.3390/e22050559
Jamieson, K. H. & Cappella, J. N. Echo chamber: Rush Limbaugh and the conservative media establishment (Oxford University Press, 2008).
McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: Homophily in social networks. Ann. Rev. Sociol. 27, 415–444 (2001).
doi: 10.1146/annurev.soc.27.1.415
Bessi, A. et al. Homophily and polarization in the age of misinformation. Eur. Phys. J. Sp. Top. 225, 2047–2059 (2016).
doi: 10.1140/epjst/e2015-50319-0
Kitchens, B., Johnson, S. L. & Gray, P. Understanding echo chambers and filter bubbles: The impact of social media on diversification and partisan shifts in news consumption. MIS Quart. 44, 2 (2020).
doi: 10.25300/MISQ/2020/16371
Watts, D. J. A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99, 5766–5771 (2002).
pubmed: 16578874
pmcid: 122850
doi: 10.1073/pnas.082090499
Chen, W., Lakshmanan, L. V. & Castillo, C. Information and influence propagation in social networkss. Synth. Lect. Data Manag. 5, 1–177 (2013).
doi: 10.1007/978-3-031-01850-3
Maleki, M., Mead, E., Arani, M. & Agarwal, N. Using an epidemiological model to study the spread of misinformation during the black lives matter movement. arXiv preprint arXiv:2103.12191 (2021).
Jin, F., Dougherty, E., Saraf, P., Cao, Y. & Ramakrishnan, N. Epidemiological modeling of news and rumors on twitter. Proceedings of the 7th workshop on social network mining and analysis 1–9 (2013).
Ghosh, R. & Lerman, K. A framework for quantitative analysis of cascades on networks. In Proceedings of the fourth ACM international conference on Web search and data mining 665–674 (2011).
Goel, S., Anderson, A., Hofman, J. & Watts, D. J. The structural virality of online diffusion. Manag. Sci. 62, 180–196 (2016).
doi: 10.1287/mnsc.2015.2158
Cinelli, M., Morales, G. D., Galeazzi, A., Quattrociocchi, W. & Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci. 118, 2 (2021).
doi: 10.1073/pnas.2023301118
Matsubara, Y., Sakurai, Y., Prakash, B. A., Li, L. & Faloutsos, C. Rise and fall patterns of information diffusion: model and implications. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining 6–14 (2012).
Meiser, D. & Meystre, P. Superstrong coupling regime of cavity quantum electrodynamics. Phys. Rev. A 74, 065801 (2006).
doi: 10.1103/PhysRevA.74.065801
Sasahara, K. et al. Social influence and unfollowing accelerate the emergence of echo chambers. J. Comput. Soc. Sci. 4, 381–402 (2021).
doi: 10.1007/s42001-020-00084-7
Becker, J., Porter, E. & Centola, D. The wisdom of partisan crowds. Proc. Natl. Acad. Sci. 116, 10717–10722 (2019).
pubmed: 31085635
pmcid: 6561169
doi: 10.1073/pnas.1817195116
Shuai, X. et al. Modeling indirect influence on twitter. Int. J. Semant. Web Inf. Syst. 8, 20–36 (2012).
doi: 10.4018/jswis.2012100102
Bagarello, F. & Haven, E. The role of information in a two-traders market. Phys. A: Stat. Mech. its Appl. 404, 224 (2014).
doi: 10.1016/j.physa.2014.02.052