Development and validation of an optimized marker set for genomic selection in southern U.S. rice breeding programs.
Journal
The plant genome
ISSN: 1940-3372
Titre abrégé: Plant Genome
Pays: United States
ID NLM: 101273919
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
15
11
2021
accepted:
28
03
2022
pubmed:
26
5
2022
medline:
20
9
2022
entrez:
25
5
2022
Statut:
ppublish
Résumé
The potential of genomic selection (GS) to increase the efficiency of breeding programs has been clearly demonstrated; however, the implementation of GS in rice (Oryza sativa L.) breeding programs has been limited. In recent years, efforts have begun to work toward implementing GS into the Louisiana State University (LSU) Agricultural Center rice breeding program. One of the first steps for successful GS implementation is to establish a suitable marker set for the target germplasm and a reliable, cost-effective genotyping platform capable of providing informative marker data with an adequate turnaround time. The objective of this study was to develop a marker set for routine GS and demonstrate its effectiveness in southern U.S. rice germplasm. The utility of the resulting marker set, the LSU500, for GS applications was demonstrated using four years of breeding data across 7,607 experimental lines and four elite biparental populations. The predictive ability of GS ranged from 0.13 to 0.78 for key traits across different market classes and yield trials. Comparisons between phenotypic selection and GS within biparental populations demonstrates similar performance of GS compared with phenotypic selection in predicting future performance. The prediction accuracies obtained with the LSU500 marker set demonstrates the utility of this marker set for cost-effective GS applications in southern U.S. rice breeding programs. The LSU500 marker set has been established through the genotyping service provider Agriplex Genomics, and in the future, it will undergo improvements to reduce the cost and increase the accuracy of GS. A SNP marker set was developed for genomic selection in southern U.S. rice breeding programs. Predictive ability across target germplasm was shown with 3 yr of data (4,078 lines). Within-population predictive ability was shown across four biparental populations. Genomic and phenotypic selection ability to predict future performance was compared.
Autres résumés
Type: Publisher
(spa)
A SNP marker set was developed for genomic selection in southern U.S. rice breeding programs. Predictive ability across target germplasm was shown with 3 yr of data (4,078 lines). Within-population predictive ability was shown across four biparental populations. Genomic and phenotypic selection ability to predict future performance was compared.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e20219Informations de copyright
© 2022 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
Références
Abed, A., Pérez-Rodríguez, P., Crossa, J., & Belzile, F. (2018). When less can be better: How can we make genomic selection more cost-effective and accurate in barley? Theoretical and Applied Genetics, 131, 1873-1890. https://doi.org/10.1007/s00122-018-3120-8
Addison, C. K., Angira, B., Cerioli, T., Groth, D. E., Richards, J. K., Linscombe, S. D., & Famoso, A. N. (2021). Identification and mapping of a novel resistance gene to the rice pathogen, Cercospora janseana. Theoretical and Applied Genetics, 134, 2221-2234. https://doi.org/10.1007/s00122-021-03821-2
Addison, C. K., Angira, B., Kongchum, M., Harrell, D. L., Baisakh, N., Linscombe, S. D., & Famoso, A. N. (2020). Characterization of haplotype diversity in the BADH2 aroma gene and development of a KASP SNP assay for predicting aroma in U.S. rice. Rice, 13, 47. https://doi.org/10.1186/s12284-020-00410-7
Amadeu, R. R., Cellon, C., Olmstead, J. W., Garcia, A. A. F., Resende, M. F. R., & Muñoz, P. R. (2016). AGHmatrix: R package to construct relationship matrices for autotetraploid and diploid species: A blueberry example. The Plant Genome, 9, plantgenome2016.01.0009. https://doi.org/10.3835/plantgenome2016.01.0009
Angira, B., Addison, C. K., Cerioli, T., Rebong, D. B., Wang, D. R., Pumplin, N., Ham, J. H., Oard, J. H., Linscombe, S. D., & Famoso, A. N. (2019). Haplotype characterization of the sd1 semidwarf gene in United States rice. The Plant Genome, 12, 190010. https://doi.org/10.3835/plantgenome2019.02.0010
Arbelaez, J. D., Dwiyanti, M. S., Tandayu, E., Llantada, K., Jarana, A., Ignacio, J. C., Platten, J. D., Cobb, J., Rutkoski, J. E., Thomson, M. J., & Kretzschmar, T. (2019). 1k-RiCA (1K-Rice Custom Amplicon) a novel genotyping amplicon-based SNP assay for genetics and breeding applications in rice. Rice, 12, 55. https://doi.org/10.1186/s12284-019-0311-0
Bernardo, R. (1994). Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Science, 34, 20-25. https://doi.org/10.2135/cropsci1994.0011183/003400010003x
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633-2635. https://doi.org/10.1093/bioinformatics/btm308
Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J., & Thompson, R. (2018). ASReml-R reference manual version 4. VSN International Ltd. https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/ASReml-R-Reference-Manual-4.pdf
Cobb, J. N., Biswas, P. S., & Platten, J. D. (2019). Back to the future: Revisiting MAS as a tool for modern plant breeding. Theoretical and Applied Genetics, 132, 647-667. https://doi.org/10.1007/s00122-018-3266-4
Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 557-572. https://doi.org/10.1098/rstb.2007.2170
Covarrubias-Pazaran, G. E. (2019). Heritability : Meaning and computation. CGIAR, Excellence in Breeding Platform. https://excellenceinbreeding.org/sites/default/files/manual/EiB-M2_Heritability_18-02-20.pdf
Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de los Campos, G., Burgueño, J., González-Camacho, J. M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R., Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., & Varshney, R. K. (2017). Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science, 22, 961-975. https://doi.org/10.1016/j.tplants.2017.08.011
Daetwyler, H. D., Pong-wong, R., Villanueva, B., & Woolliams, J. A. (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics, 1031, 1021-1031. https://doi.org/10.1534/genetics.110.116855
Flint-Garcia, S. A., Thornsberry, J. M., & Edward, IV, E. S. (2003). Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 54, 357-374. https://doi.org/10.1146/annurev.arplant.54.031902.134907
Gezan, S. A., de Oliveira, A. A., & Murray, D. (2021). ASRgenomics: An R package with complementary genomic functions. VSN International Ltd.
Goddard, M. E., & Hayes, B. J. (2007). Genomic selection. Journal of Animal Breeding and Genetics, 124, 323-330. https://doi.org/10.1111/j.1439-0388.2007.00702.x
Gonen, S., Wimmer, V., Gaynor, R. C., Byrne, E., Gorjanc, G., & Hickey, J. M. (2018). A heuristic method for fast and accurate phasing and imputation of single-nucleotide polymorphism data in bi-parental plant populations. Theoretical and Applied Genetics, 131, 2345-2357. https://doi.org/10.1007/s00122-018-3156-9
Gorjanc, G., Battagin, M., Dumasy, J. F., Antolin, R., Gaynor, R. C., & Hickey, J. M. (2017). Prospects for cost-effective genomic selection via accurate within-family imputation. Crop Science, 57, 216-228. https://doi.org/10.2135/cropsci2016.06.0526
Grenier, C., Cao, T. V., Ospina, Y., Quintero, C., Châtel, M. H., Tohme, J., Courtois, B., & Ahmadi, N. (2015). Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS One, 10, e0136594. https://doi.org/10.1371/journal.pone.0136594
Heffner, E. L., Lorenz, A. J., Jannink, J.-L., & Sorrells, M. E. (2010). Plant breeding with genomic selection: Gain per unit time and cost. Crop Science, 50, 1681-1690. https://doi.org/10.2135/cropsci2009.11.0662
Heffner, E. L., Sorrells, M. E., & Jannink, J.-L. (2009). Genomic selection for crop improvement. Crop Science, 49, 1-12. https://doi.org/10.2135/cropsci2008.08.0512
Hickey, J. M., Chiurugwi, T., Mackay, I., & Powell, W. (2017). Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 49, 1297-1303. https://doi.org/10.1038/ng.3920
Jacobson, A., Lian, L., Zhong, S., & Bernardo, R. (2015). Marker imputation before genomewide selection in biparental maize populations. The Plant Genome, 8, plantgenome2014.10.0078. https://doi.org/10.3835/plantgenome2014.10.0078
Jensen, S. E., Charles, J. R., Muleta, K., Bradbury, P. J., Casstevens, T., Deshpande, S. P., Gore, M. A., Gupta, R., Ilut, D. C., Johnson, L., Lozano, R., Miller, Z., Ramu, P., Rathore, A., Romay, M. C., Upadhyaya, H. D., Varshney, R. K., Morris, G. P., Pressoir, G., … Ramstein, G. P. (2020). A sorghum practical haplotype graph facilitates genome-wide imputation and cost-effective genomic prediction. The Plant Genome, 13, e20009. https://doi.org/10.1002/tpg2.20009
Juliana, P., Poland, J., Huerta-Espino, J., Shrestha, S., Crossa, J., Crespo-Herrera, L., Toledo, F. H., Govindan, V., Mondal, S., Kumar, U., Bhavani, S., Singh, P. K., Randhawa, M. S., He, X., Guzman, C., Dreisigacker, S., Rouse, M. N., Jin, Y., Pérez-Rodríguez, P., … Singh, R. P. (2019). Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nature Genetics, 51, 1530-1539. https://doi.org/10.1038/s41588-019-0496-6
McCouch, S. R., Wright, M. H., Tung, C. W., Maron, L. G., McNally, K. L., Fitzgerald, M., Singh, N., DeClerck, G., Agosto-Perez, F., Korniliev, P., Greenberg, A. J., Naredo, M. E. B., Mercado, S. M. Q., Harrington, S. E., Shi, Y., Branchini, D. A., Kuser-Falcão, P. R., Leung, H., Ebana, K., … Mezey, J. (2016). Open access resources for genome-wide association mapping in rice. Nature Communications, 7, 10532. https://doi.org/10.1038/ncomms10532
Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819-1829. https://doi.org/10.1093/genetics/157.4.1819
Monteverde, E., Rosas, J. E., Blanco, P., Pérez de Vida, F., Bonnecarrère, V., Quero, G., Gutierrez, L., & McCouch, S. (2018). Multienvironment models increase prediction accuracy of complex traits in advanced breeding lines of rice. Crop Science, 58, 1519-1530. https://doi.org/10.2135/cropsci2017.09.0564
Morales, K. Y., Singh, N., Perez, F. A., Ignacio, J. C., Thapa, R., Arbelaez, J. D., Tabien, R. E., Famoso, A., Wang, D. R., Septiningsih, E. M., Shi, Y., Kretzschmar, T., McCouch, S. R., & Thomson, M. J. (2020). An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies. PLOS One, 15, e0232479. https://doi.org/10.1371/journal.pone.0232479
Poland, J. A., & Rife, T. W. (2012). Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome, 5, 92-102. https://doi.org/10.3835/plantgenome2012.05.0005
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559-575. https://doi.org/10.1086/519795
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Saichuk, J. K. (Ed.). (2014). Louisiana rice production handbook. LSU AgCenter. https://www.lsuagcenter.com/portals/communications/publications/publications_catalog/crops_livestock/rice/rice-production-handbook1
Santantonio, N., Atanda, S. A., Beyene, Y., Varshney, R. K., Olsen, M., Jones, E., Roorkiwal, M., Gowda, M., Bharadwaj, C., Gaur, P. M., Zhang, X., Dreher, K., Ayala-Hernández, C., Crossa, J., Pérez-Rodríguez, P., Rathore, A., Gao, S. Y., McCouch, S., & Robbins, K. R. (2020). Strategies for effective use of genomic information in crop breeding programs serving Africa and South Asia. Frontiers in Plant Science, 11, 353. https://doi.org/10.3389/fpls.2020.00353
Spindel, J., Begum, H., Akdemir, D., Virk, P., Collard, B., Redoña, E., Atlin, G., Jannink, J.-L., & McCouch, S. R. (2015). Genomic selection and association mapping in rice (Oryza sativa): Effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genetics, 11, e1004982. https://doi.org/10.1371/journal.pgen.1004982
VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414-4423. https://doi.org/10.3168/jds.2007-0980
Voss-Fels, K. P., Cooper, M., & Hayes, B. J. (2019). Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics, 132, 669-686. https://doi.org/10.1007/s00122-018-3270-8
Werner, C. R., Gaynor, R. C., Gorjanc, G., Hickey, J. M., Kox, T., Abbadi, A., Leckband, G., Snowdon, R. J., & Stahl, A. (2020). How population structure impacts genomic selection accuracy in cross-validation: Implications for practical breeding. Frontiers in Plant Science, 11, 592977. https://doi.org/10.3389/fpls.2020.592977
Werner, C. R., Voss-Fels, K. P., Miller, C. N., Qian, W., Hua, W., Guan, C., Snowdon, R. J., & Qian, L. (2018). Effective genomic selection in a narrow-genepool crop with low-density markers: Asian rapeseed as an example. The Plant Genome, 11, 170084. https://doi.org/10.3835/plantgenome2017.09.0084
Xu, Y., Ma, K., Zhao, Y., Wang, X., Zhou, K., Yu, G., Li, C., Li, P., Yang, Z., Xu, C., & Xu, S. (2021). Genomic selection: A breakthrough technology in rice breeding. Crop Journal, 9, 669-677. https://doi.org/10.1016/j.cj.2021.03.008
Yang, S., Fresnedo-Ramírez, J., Wang, M., Cote, L., Schweitzer, P., Barba, P., Takacs, E. M., Clark, M., Luby, J., Manns, D. C., Sacks, G., Mansfield, A. K., Londo, J., Fennell, A., Gadoury, D., Reisch, B., Cadle-Davidson, L., & Sun, Q. (2016). A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: A case study for marker-assisted selection in grapevine. Horticulture Research, 3, 16002. https://doi.org/10.1038/hortres.2016.2
Yin, L., Zhang, H., Tang, Z., Xu, J., Yin, D., Zhang, Z., Yuan, X., Zhu, M., Zhao, S., Li, X., & Liu, X. (2021). rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 19, 619-628. https://doi.org/10.1016/j.gpb.2020.10.007
Zhao, K., Tung, C. W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A., Mezey, J., McClung, A. M., Bustamante, C. D., & McCouch, S. R. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2, 467. https://doi.org/10.1038/ncomms1467