Evolution of Earth's tectonic carbon conveyor belt.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
15
04
2020
accepted:
13
01
2022
entrez:
25
5
2022
pubmed:
26
5
2022
medline:
28
5
2022
Statut:
ppublish
Résumé
Concealed deep beneath the oceans is a carbon conveyor belt, propelled by plate tectonics. Our understanding of its modern functioning is underpinned by direct observations, but its variability through time has been poorly quantified. Here we reconstruct oceanic plate carbon reservoirs and track the fate of subducted carbon using thermodynamic modelling. In the Mesozoic era, 250 to 66 million years ago, plate tectonic processes had a pivotal role in driving climate change. Triassic-Jurassic period cooling correlates with a reduction in solid Earth outgassing, whereas Cretaceous period greenhouse conditions can be linked to a doubling in outgassing, driven by high-speed plate tectonics. The associated 'carbon subduction superflux' into the subcontinental mantle may have sparked North American diamond formation. In the Cenozoic era, continental collisions slowed seafloor spreading, reducing tectonically driven outgassing, while deep-sea carbonate sediments emerged as the Earth's largest carbon sink. Subduction and devolatilization of this reservoir beneath volcanic arcs led to a Cenozoic increase in carbon outgassing, surpassing mid-ocean ridges as the dominant source of carbon emissions 20 million years ago. An increase in solid Earth carbon emissions during Cenozoic cooling requires an increase in continental silicate weathering flux to draw down atmospheric carbon dioxide, challenging previous views and providing boundary conditions for future carbon cycle models.
Identifiants
pubmed: 35614243
doi: 10.1038/s41586-022-04420-x
pii: 10.1038/s41586-022-04420-x
doi:
Substances chimiques
Carbonates
0
Carbon Dioxide
142M471B3J
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
629-639Informations de copyright
© 2022. Springer Nature Limited.
Références
Broecker, W. The Great Ocean Conveyor: Discovering the Trigger for Abrupt Climate Change (Princeton Univ. Press, 2010).
Orcutt, B. N., Daniel, I. & Dasgupta, R. Deep Carbon: Past to Present (Cambridge Univ. Press, 2019).This book provides a review of carbon inside the Earth, including its quantities, movements, forms, origins, changes over time and impacts on planetary processes.
Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).
doi: 10.2475/ajs.283.7.641
Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).
doi: 10.1016/j.epsl.2010.06.039
Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO
doi: 10.1016/j.gr.2018.12.001
Werner, C. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 188–236 (Cambridge Univ. Press, 2019).
Berner, R. A. The Phanerozoic Carbon Cycle: CO
Garrels, R. M. & MacKenzie, F. T. A quantitative model for the sedimentary rock cycle. Mar. Chem. 1, 27–41 (1972).
doi: 10.1016/0304-4203(72)90004-7
Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015). This review summarizes carbon inputs and outputs to the mantle and emphasizes the potential for carbon to be efficiently recycled from the slab and potentially stored in the arc lithosphere.
pubmed: 26048906
pmcid: 4522802
doi: 10.1073/pnas.1507889112
Keller, T., Katz, R. F. & Hirschmann, M. M. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464, 55–68 (2017).
doi: 10.1016/j.epsl.2017.02.006
Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019). A review of the present-day processes and fluxes involved in subducting and recycling carbon.
pubmed: 31619791
doi: 10.1038/s41586-019-1643-z
Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).
doi: 10.1029/2002GC000392
Bekaert, D. et al. Subduction-driven volatile recycling: a global mass balance. Ann. Rev. Earth Sci. 49, 37–70 (2021). This review provides an overview of Earth’s volatile inventory and the mechanisms by which volatiles are transferred between Earth reservoirs through subduction.
doi: 10.1146/annurev-earth-071620-055024
Wong, K. et al. Deep carbon cycling over the past 200 million years: a review of fluxes in different tectonic settings. Front. Earth Sci. 7, 263 (2019).
doi: 10.3389/feart.2019.00263
Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019). A global plate tectonic model for the Mesozoic and Cenozoic eras, including the evolution of plate boundaries and plate deformation along rifts and orogens, which forms the tectonic basis for computing carbon fluxes through time.
doi: 10.1029/2018TC005462
Dutkiewicz, A., Müller, R. D., Cannon, J., Vaughan, S. & Zahirovic, S. Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous. Geology 47, 91–94 (2019). This paper presents a model for the spatiotemporal evolution of deep-sea carbonate accumulation and subduction through time.
doi: 10.1130/G45424.1
Gillis, K. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011). Ocean drilling data are used to model how the precipitation of carbonate minerals in hydrothermally altered ocean crust depends on crustal age and bottom-water temperature.
doi: 10.1016/j.epsl.2010.12.030
Clift, P. D. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).
doi: 10.1002/2016RG000531
Faccenda, M. Water in the slab: a trilogy. Tectonophysics 614, 1–30 (2014). Numerical models, together with geological and geophysical observations, reveal how slab bending during subduction causes fracturing, faulting and serpentinization of the oceanic lithosphere.
doi: 10.1016/j.tecto.2013.12.020
National Geophysical Data Center/World Data Service (NGDC/WDS). NCEI/WDS Global Significant Earthquake Database (NOAA National Centers for Environmental Information, accessed 2 December 2020); https://doi.org/10.7289/V5TD9V7K
Buffett, B. & Heuret, A. Curvature of subducted lithosphere from earthquake locations in the Wadati–Benioff zone. Geochem. Geophys. Geosyst. 12, Q06010 (2011).
doi: 10.1029/2011GC003570
Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004). A review of the parameters controlling the tectonic accretion and erosion of sediments along subduction zones.
doi: 10.1029/2003RG000127
Müller, R. D. & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci. Adv. 4, eaaq0500 (2018).
pubmed: 29457135
pmcid: 5812735
doi: 10.1126/sciadv.aaq0500
Merdith, A. S., Atkins, S. E. & Tetley, M. G. Tectonic controls on carbon and serpentinite storage in subducted upper oceanic lithosphere for the past 320 Ma. Front. Earth Sci. 7, 332 (2019). A model explaining how seafloor spreading rates have governed the storage and subduction of serpentinite in the oceanic lithosphere through time.
doi: 10.3389/feart.2019.00332
Tucker, J. M., Mukhopadhyay, S. & Gonnermann, H. M. Reconstructing mantle carbon and noble gas contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496, 108–119 (2018).
doi: 10.1016/j.epsl.2018.05.024
Le Voyer, M., Kelley, K. A., Cottrell, E. & Hauri, E. Heterogeneity in mantle carbon content from CO
pubmed: 28082738
pmcid: 5241784
doi: 10.1038/ncomms14062
Marty, B., Alexander, C. M. O. D. & Raymond, S. N. Primordial origins of Earth’s carbon. Rev. Mineral. Geochem. 75, 149–181 (2013).
doi: 10.2138/rmg.2013.75.6
Resing, J. A., Lupton, J. E., Feely, R. A. & Lilley, M. D. CO
doi: 10.1016/j.epsl.2004.07.028
Tucholke, B. E., Lin, J. & Kleinrock, M. C. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid‐Atlantic Ridge. J. Geophys. Res. Solid Earth 103, 9857–9866 (1998).
doi: 10.1029/98JB00167
Cannat, M., Fontaine, F. & Escartin, J. in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges (eds Rona, P. A. et al.) 241–264 (American Geophysical Union, 2010).
Alt, J. C. & Teagle, D. A. H. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).
doi: 10.1016/S0016-7037(99)00123-4
Hay, W. W. in Coccolithophores—From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 509–528 (Springer, 2004).
Roth, P. H. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Special Publication No. 21, 1986).
Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, Q10014 (2009).
doi: 10.1029/2009GC002540
Gonzalez, C. M., Gorczyk, W. & Gerya, T. Decarbonation of subducting slabs: Insight from petrological–thermomechanical modeling. Gondwana Res. 36, 314–332 (2016).
doi: 10.1016/j.gr.2015.07.011
Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).
doi: 10.1016/j.gca.2010.11.027
Alt, J. C. et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).
doi: 10.1016/j.lithos.2012.12.006
Menzel, M. D., Garrido, C. J. & Sánchez-Vizcaíno, V. L. Fluid-mediated carbon release from serpentinite-hosted carbonates during dehydration of antigorite-serpentinite in subduction zones. Earth Planet. Sci. Lett. 531, 115964 (2020).
doi: 10.1016/j.epsl.2019.115964
Gorman, P. J., Kerrick, D. & Connolly, J. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).
doi: 10.1029/2005GC001125
Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature 411, 293–296 (2001). The authors use phase equilibria to quantify the evolution of CO
pubmed: 11357128
pmcid: 8127824
doi: 10.1038/35077056
Connolly, J. A. & Galvez, M. E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth Planet. Sci. Lett. 501, 90–102 (2018).
doi: 10.1016/j.epsl.2018.08.024
Kerrick, D. M. & Connolly, J. A. D. Subduction of ophicarbonates and recycling of CO
doi: 10.1130/0091-7613(1998)026<0375:SOOARO>2.3.CO;2
Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 189, 19–29 (2001).
doi: 10.1016/S0012-821X(01)00347-8
Ague, J. J. & Nicolescu, S. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014).
doi: 10.1038/ngeo2143
Farsang, S. et al. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 12, 4311 (2021).
pubmed: 34262043
pmcid: 8280166
doi: 10.1038/s41467-021-24533-7
Stewart, E. M. & Ague, J. J. Pervasive subduction zone devolatilization recycles CO
pubmed: 33277477
pmcid: 7718257
doi: 10.1038/s41467-020-19993-2
Grassi, D., Schmidt, M. W. & Günther, D. Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet. Sci. Lett. 327, 84–96 (2012).
doi: 10.1016/j.epsl.2012.01.023
Sun, Y., Hier-Majumder, S., Xu, Y. & Walter, M. Stability and migration of slab-derived carbonate-rich melts above the transition zone. Earth Planet. Sci. Lett. 531, 116000 (2020).
doi: 10.1016/j.epsl.2019.116000
East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction history reveals Cretaceous slab superflux as a possible cause for the mid-Cretaceous plume pulse and superswell events. Gondwana Res. 79, 125–139 (2020).
doi: 10.1016/j.gr.2019.09.001
Safonova, I., Litasov, K. & Maruyama, S. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geosci. Front. 6, 679–685 (2015).
doi: 10.1016/j.gsf.2014.11.004
Li, X., Zhang, C., Li, Y., Wang, Y. & Liu, L. Refined chronostratigraphy of the late Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution. Gondwana Res. 66, 143–167 (2019).
doi: 10.1016/j.gr.2018.09.006
Wu, F.-Y., Lin, J.-Q., Wilde, S. A. & Yang, J.-H. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 233, 103–119 (2005).
doi: 10.1016/j.epsl.2005.02.019
Cao, X., Flament, N., Li, S. & Müller, R. D. Spatio-temporal evolution and dynamic origin of Jurassic–Cretaceous magmatism in the South China Block. Earth Sci. Rev. 217, 103605 (2021).
doi: 10.1016/j.earscirev.2021.103605
Pepper, M. B. Magmatic history and crustal genesis of South America: constraints from U–Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere 12, 1532–1555 (2014).
doi: 10.1130/GES01315.1
Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the evidence. Elements 11, 91–98 (2015).
doi: 10.2113/gselements.11.2.91
Li, K., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019).
doi: 10.1016/j.epsl.2019.03.041
Giuliani, A. & Pearson, D. G. Kimberlites: from deep earth to diamond mines. Elements 15, 377–380 (2019).
doi: 10.2138/gselements.15.6.377
Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).
doi: 10.1016/j.lithos.2003.07.005
Currie, C. A. & Beaumont, C. Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America? Earth Planet. Sci. Lett. 303, 59–70 (2011). Low-angle subduction stabilizes hydrous minerals in the cool interior of the subducting plate over large distances from the trench and eventual partial melting of these minerals can drive diamond formation.
doi: 10.1016/j.epsl.2010.12.036
Weiss, Y., McNeill, J., Pearson, D. G., Nowell, G. M. & Ottley, C. J. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524, 339–342 (2015).
pubmed: 26289205
doi: 10.1038/nature14857
Foley, S. F., Yaxley, G. M. & Kjarsgaard, B. A. Kimberlites from source to surface: insights from experiments. Elements 15, 393–398 (2019).
doi: 10.2138/gselements.15.6.393
Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).
doi: 10.1016/j.epsl.2017.12.013
Spandler, C. & Pirard, C. Element recycling from subducting slabs to arc crust: a review. Lithos 170, 208–223 (2013).
doi: 10.1016/j.lithos.2013.02.016
Gorczyk, W., Gonzalez, C. M. & Hobbs, B. Carbon dioxide as a proxy for orogenic gold source. Ore Geol. Rev. 127, 103829 (2020).
doi: 10.1016/j.oregeorev.2020.103829
Kokh, M. A., Akinfiev, N. N., Pokrovski, G. S., Salvi, S. & Guillaume, D. The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 197, 433–466 (2017).
doi: 10.1016/j.gca.2016.11.007
Haas, J. R., Shock, E. L. & Sassani, D. C. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350 (1995).
doi: 10.1016/0016-7037(95)00314-P
Phillips, G. N. & Evans, K. A. Role of CO
pubmed: 15215861
doi: 10.1038/nature02644
Lee, C.-T. A., Jiang, H., Dasgupta, R. & Torres, M. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 313–357 (Cambridge Univ. Press, 2019).This paper explains the deep carbon cycle feedback loops involved in the whole Earth-system evolution and climate change.
Berner, R. A. A model for atmospheric CO
doi: 10.2475/ajs.291.4.339
Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O
doi: 10.1016/j.gca.2005.11.032
Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
doi: 10.1016/j.earscirev.2017.12.004
Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).
pubmed: 28530231
pmcid: 5458154
doi: 10.1038/ncomms15423
Marcilly, C. M., Torsvik, T. H., Domeier, M. & Royer, D. L. New paleogeographic and degassing parameters for long-term carbon cycle models. Gondwana Res. 97, 176–203 (2021).
doi: 10.1016/j.gr.2021.05.016
Wilkinson, B. H. & Walker, J. C. Phanerozoic cycling of sedimentary carbonate. Am. J. Sci. 289, 525–548 (1989).
doi: 10.2475/ajs.289.4.525
Caldeira, K. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992). This author recognized that the gradual shift of carbonate deposition from continental to pelagic settings must have increased the subduction of carbonates and their metamorphic decarbonation, resulting in a Cenozoic increase in CO
doi: 10.1038/357578a0
Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).
pubmed: 28375201
pmcid: 5382278
doi: 10.1038/ncomms14845
Witkowski, C. R., Weijers, J. W., Blais, B., Schouten, S. & Damsté, J. S. S. Molecular fossils from phytoplankton reveal secular pCO
pubmed: 30498776
pmcid: 6261654
doi: 10.1126/sciadv.aat4556
Gernon, T. et al. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021).
doi: 10.1038/s41561-021-00806-0
McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).
pubmed: 27102480
doi: 10.1126/science.aad5787
Pall, J. et al. The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO
Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc activity since 750 Ma: a global compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).
doi: 10.1016/j.epsl.2016.12.044
Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution across two supercontinent cycles. Global Planet. Change 173, 1–14 (2019).
doi: 10.1016/j.gloplacha.2018.11.006
Goddéris, Y. & Donnadieu, Y. A sink-or a source-driven carbon cycle at the geological timescale? Relative importance of palaeogeography versus solid Earth degassing rate in the Phanerozoic climatic evolution. Geol. Mag. 156, 355–365 (2019).
doi: 10.1017/S0016756817001054
Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).
doi: 10.1029/2019GL083574
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).
pubmed: 11326091
doi: 10.1126/science.1059412
Bluth, G. J. S. & Kump, L. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991).
doi: 10.2475/ajs.291.3.284
Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl Acad. Sci. USA 117, 25319–25326 (2020).
pubmed: 32973090
pmcid: 7568243
doi: 10.1073/pnas.2011033117
Caves Rugenstein, J. K., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99–102 (2019).
pubmed: 31270485
doi: 10.1038/s41586-019-1332-y
Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).
pubmed: 22282473
doi: 10.1126/science.1214697
Bernhardt, A. et al.
doi: 10.1029/2019GL086061
Li, S., Goldstein, S. L. & Raymo, M. E. Neogene continental denudation and the beryllium conundrum. Proc. Natl Acad. Sci. USA 118, e2026456118 (2021).
pubmed: 34649990
pmcid: 8545494
doi: 10.1073/pnas.2026456118
Dunlea, A. G., Murray, R. W., Ramos, D. P. S. & Higgins, J. A. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering. Nat. Commun. 8, 844 (2017).
pubmed: 29018196
pmcid: 5635029
doi: 10.1038/s41467-017-00853-5
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).
pubmed: 30089907
doi: 10.1038/s41586-018-0408-4
Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).
doi: 10.1016/j.earscirev.2012.03.002
Brune, S., Williams, S. E. & Müller, R. D. Potential links between continental rifting, CO
doi: 10.1038/s41561-017-0003-6
Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010). Two-dimensional thermal modelling of a global set of kinematically defined subduction-zone segments provides insights into the sources of fluid and melt.
doi: 10.1016/j.pepi.2010.02.004
Lunt, D. J. et al. DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Clim. Past Discuss. 17, 203–227 (2021).
doi: 10.5194/cp-17-203-2021
Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2020).
Penman, D. E., Rugenstein, J. K. C., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).
doi: 10.1016/j.earscirev.2020.103298
Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating the performance of past climate model projections. Geophys. Res. Lett. 47, e2019GL085378 (2020).
doi: 10.1029/2019GL085378