Gene identification and functional analysis of a D-type cyclin (CCND2) in freshwater pearl mussel (Hyriopsis cumingii).
Cell cycle
Hc-CCND2
Hyriopsis cumingii
Overexpression
RNA interference
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
received:
21
12
2021
accepted:
21
04
2022
pubmed:
27
5
2022
medline:
14
7
2022
entrez:
26
5
2022
Statut:
ppublish
Résumé
Cyclin D (CCND) plays an important role in the cell cycle and is a rate-limiting factor that facilitates the G1/S transition. In this study, the full-length cDNA of Hc-CCND2 was isolated from freshwater pearl mussel (Hyriopsis cumingii; Hc) and amplified using the 3´/5´ RACE system. The Hc-CCND2 expression profiles were analysed by quantitative real-time PCR. Functional analysis of the Hc-CCND2 genes was examined by both RNA interference (RNAi) and overexpression in H. cumingii. Hc-CCND2 protein sequences were 295 amino acids long, possessed D-type cyclin signature motifs and contained conserved cyclin box domains. Hc-CCND2 was expressed in all examined tissues (adductor, foot, visceral mass, gill, outer mantle, inner mantle and gonad), with the highest expression levels found in the gill (P < 0.05). During the different developmental periods of the embryo, the relative expression of Hc-CCND2 increased with embryonic development, peaking at the blastula stage and decreasing significantly in the gastrula stage. After knockdown of Hc-CCND2 by RNAi, a significant decrease in CDK6 expression levels was found, while the percentage of cells in the G0/G1 phase significantly increased. Overexpression of Hc-CCND2 in mantle cells led to increased proliferation of cultured cells (P < 0.05). Our results demonstrated that Hc-CCND2 may promote cell cycle progression in H. cumingii, and that overexpression of Hc-CCND2 promotes mantle cell proliferation. These findings may provide a novel approach for improving the slow proliferation rate of shellfish cells in in vitro cultures.
Sections du résumé
BACKGROUND
BACKGROUND
Cyclin D (CCND) plays an important role in the cell cycle and is a rate-limiting factor that facilitates the G1/S transition.
METHODS
METHODS
In this study, the full-length cDNA of Hc-CCND2 was isolated from freshwater pearl mussel (Hyriopsis cumingii; Hc) and amplified using the 3´/5´ RACE system. The Hc-CCND2 expression profiles were analysed by quantitative real-time PCR. Functional analysis of the Hc-CCND2 genes was examined by both RNA interference (RNAi) and overexpression in H. cumingii.
RESULTS
RESULTS
Hc-CCND2 protein sequences were 295 amino acids long, possessed D-type cyclin signature motifs and contained conserved cyclin box domains. Hc-CCND2 was expressed in all examined tissues (adductor, foot, visceral mass, gill, outer mantle, inner mantle and gonad), with the highest expression levels found in the gill (P < 0.05). During the different developmental periods of the embryo, the relative expression of Hc-CCND2 increased with embryonic development, peaking at the blastula stage and decreasing significantly in the gastrula stage. After knockdown of Hc-CCND2 by RNAi, a significant decrease in CDK6 expression levels was found, while the percentage of cells in the G0/G1 phase significantly increased. Overexpression of Hc-CCND2 in mantle cells led to increased proliferation of cultured cells (P < 0.05).
CONCLUSIONS
CONCLUSIONS
Our results demonstrated that Hc-CCND2 may promote cell cycle progression in H. cumingii, and that overexpression of Hc-CCND2 promotes mantle cell proliferation. These findings may provide a novel approach for improving the slow proliferation rate of shellfish cells in in vitro cultures.
Identifiants
pubmed: 35616759
doi: 10.1007/s11033-022-07501-2
pii: 10.1007/s11033-022-07501-2
doi:
Substances chimiques
Cyclins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6601-6611Subventions
Organisme : The National Key R&D Program of China
ID : 2018YFD0901406
Organisme : The National Natural Science Foundation of China
ID : 31872565
Organisme : The Earmarked Fund for Modern Agro-industry Technology Research System
ID : CARS-49
Organisme : Program of Shanghai Academic Research Leader
ID : 19XD1421500
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246(4930):629–34
doi: 10.1126/science.2683079
Koroleva OA, Tomlinson M, Parinyapong P, Sakvarelidze L, Leader D, Shaw P, Doonan JH (2004) CycD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases. Plant Cell 16:2364–2379. https://doi.org/10.1105/tpc.104.023754
doi: 10.1105/tpc.104.023754
pubmed: 15316112
pmcid: 520939
Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166. https://doi.org/10.1038/nrc2602
doi: 10.1038/nrc2602
pubmed: 19238148
Zhang Q, Sakamoto K, Wagner KU (2014) D-type Cyclins are important downstream effectors of cytokine signaling that regulate the proliferation of normal and neoplastic mammary epithelial cells. Mol Cell Endocrinol 382:583–592. https://doi.org/10.1016/j.mce.2013.03.016
doi: 10.1016/j.mce.2013.03.016
pubmed: 23562856
Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A (1991) A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 350:512–515. https://doi.org/10.1038/350512a0
doi: 10.1038/350512a0
pubmed: 1826542
Denicourt C, Legault P, McNabb FA, Rassart E (2008) Human and mouse cyclin D2 splice variants: transforming activity and subcellular localization. Oncogene 27:1253–1262. https://doi.org/10.1038/sj.onc.1210750
doi: 10.1038/sj.onc.1210750
pubmed: 17873913
Gong J, Traganos F, Darzynkiewicz Z (1995) Threshold expression of cyclin E but not D type cyclins characterizes normal and tumour cells entering S phase. Cell Prolif 28:337–346. https://doi.org/10.1111/j.1365-2184.1995.tb00075.x
doi: 10.1111/j.1365-2184.1995.tb00075.x
pubmed: 7626688
Beumer TL, Roepers-Gajadien HL, Gademan IS, Kal HB, de Rooij DG (2000) Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse. Biol Reprod 63:1893–1898. https://doi.org/10.1095/biolreprod63.6.1893
doi: 10.1095/biolreprod63.6.1893
pubmed: 11090462
Kerkhoff E, Ziff EB (1995) Cyclin D2 and Ha-Ras transformed rat embryo fibroblasts exhibit a novel deregulation of cell size control and early S phase arrest in low serum. EMBO J 14:1892–1903
doi: 10.1002/j.1460-2075.1995.tb07181.x
Van Diest PJ, Michalides RJ, Jannink L, van der Valk P, Peterse HL, de Jong JS, Meijer CJ, Baak JP (1997) Cyclin D1 expression in invasive breast cancer. Correlations and prognostic value. Am J Pathol 150:705–711
pubmed: 9033283
pmcid: 1858273
Kato JY, Sherr CJ (1993) Inhibition of granulocyte differentiation by G1 cyclins D2 and D3 but not D1. Proc Natl Acad Sci USA 90:11513–11517. https://doi.org/10.1073/pnas.90.24.11513
doi: 10.1073/pnas.90.24.11513
pubmed: 7505440
pmcid: 48014
Resnitzky D, Gossen M, Bujard H, Reed SI (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14:1669–1679. https://doi.org/10.1128/mcb.14.3.1669-1679.1994
doi: 10.1128/mcb.14.3.1669-1679.1994
pubmed: 8114703
pmcid: 358525
Lee J, Kanatsu-Shinohara M, Morimoto H, Kazuki Y, Takashima S, Oshimura M, Toyokuni S, Shinohara T (2009) Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. Cell Stem Cell 5:76–86. https://doi.org/10.1016/j.stem.2009.04.020
doi: 10.1016/j.stem.2009.04.020
pubmed: 19570516
Zhang Q, Sun H, Jiang Y, Ding L, Wu S, Fang T, Yan G, Hu Y (2013) MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS ONE 8:e59667. https://doi.org/10.1371/journal.pone.0059667
doi: 10.1371/journal.pone.0059667
pubmed: 23527246
pmcid: 3604175
Summers AF, Pohlmeier WE, Sargent KM, Cole BD, Vinton RJ, Kurz SG, McFee RM, Cushman RA, Cupp AS, Wood JR (2014) Altered theca and cumulus oocyte complex gene expression, follicular arrest and reduced fertility in cows with dominant follicle follicular fluid androgen excess. PLoS ONE 9:e110683. https://doi.org/10.1371/journal.pone.0110683
doi: 10.1371/journal.pone.0110683
pubmed: 25330369
pmcid: 4199720
Zhao A, Yang L, Ma K, Sun M, Li L, Huang J, Li Y, Zhang C, Li H, Fu X (2016) Overexpression of cyclin D1 induces the reprogramming of differentiated epidermal cells into stem cell-like cells. Cell Cycle 15:644–653. https://doi.org/10.1080/15384101.2016.1146838
doi: 10.1080/15384101.2016.1146838
pubmed: 26890246
pmcid: 4845944
Sherr CJ (1995) D-type cyclins. Trends Biochem Sci 20:187–190. https://doi.org/10.1016/s0968-0004(00)89005-2
doi: 10.1016/s0968-0004(00)89005-2
pubmed: 7610482
Lamers AE, Heiney JP, Ram JL (1999) Cloning and sequence analysis of two cDNAs encoding cyclin A and cyclin B in the zebra mussel Dreissena polymorpha. Biochim Biophys Acta 1448:519–524. https://doi.org/10.1016/s0167-4889(98)00168-2
doi: 10.1016/s0167-4889(98)00168-2
pubmed: 9990304
Yu JJ, Ye HH, Hy H (2006) The research progress on cyclins in aquatic animals. J Xiamen Univ. 45:185–189
Taieb F, Jessus C (1996) Xenopus cyclin D2: cloning and expression in oocytes and during early development. Biol Cell 88:99–111
doi: 10.1111/j.1768-322X.1996.tb00984.x
Liu JM, Li WJ, Shi ZY, Cao YX, Lu AL (2020) Expression and function of cyclin B gene in Hyriopsis cumingii. J Shanghai Ocean Univ 29:496–505
Li J, Wang G, Bai Z (2009) Genetic variability in four wild and two farmed stocks of the Chinese freshwater pearl mussel (Hyriopsis cumingii) estimated by microsatellite DNA markers. Aquaculture 287:286–291. https://doi.org/10.1016/j.aquaculture.2008.10.032
doi: 10.1016/j.aquaculture.2008.10.032
Wang GL, Bai ZY, LiuXJ LJL (2014) Research progress on germplasm resources of Hyriopsis cumingii. J Fish China 38:1618–1627
Eddy L, Affandi R, Kusumorini N, Sani Y, Manalu W (2015) The pearl sac formation in male and female Pinctada maxima host oysters implanted with allograft Saibo. HAYATI J Biosci 22:122–129. https://doi.org/10.1016/j.hjb.2015.10.002
doi: 10.1016/j.hjb.2015.10.002
Jin YL, Shi ZY, Li WJ, Hao YY, Qiang G (2011) Improvement on mantle cell culture and technique for large nucleated pearl producing in Hyriopsis cumingii. J Shanghai Ocean Univ 20:705–711
Shi ZY, Li W, Li SR, Lou YD (2002) Comparision of the tissue culture and cell culture. Fish Univ 11:27–30
Li Q, Shi ZY, Li WJ, Huang K, Qi XX (2014) Impact of invitro optimization and in vivo implantation culture on the growth of Hyriopsis cumingii mantle cells. J Fish Sci China 21:225–234
Wang Y, Wang X, Ge J, Wang G, Li J (2021) Identification and functional analysis of the sex-determiner transformer-2 homologue in the freshwater pearl mussel, Hyriopsis cumingii. Front Physiol 12:704548. https://doi.org/10.3389/fphys.2021.704548
doi: 10.3389/fphys.2021.704548
pubmed: 34305654
pmcid: 8298206
Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, Geng Y, von Boehmer H, Sicinski P (2003) Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4:451–461. https://doi.org/10.1016/s1535-6108(03)00301-5
doi: 10.1016/s1535-6108(03)00301-5
pubmed: 14706337
Li Y, Meng LX (2011) Research summary on shellfish cell culture. J Kaili Univ 29:80–83
Nugent JH, Alfa CE, Young T, Hyams JS (1991) Conserved structural motifs in cyclins identified by sequence analysis. J Cell Sci 99(3):669–74
doi: 10.1242/jcs.99.3.669
Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis CW, Ma H (2004) Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 135:1084–1099. https://doi.org/10.1104/pp.104.040436
doi: 10.1104/pp.104.040436
pubmed: 15208425
pmcid: 514142
Chan HM, Smith L, La Thangue NB (2001) Role of LXCXE motif-dependent interactions in the activity of the retinoblastoma protein. Oncogene 20:6152–6163. https://doi.org/10.1038/sj.onc.1204793
doi: 10.1038/sj.onc.1204793
pubmed: 11593423
Won KA, Xiong Y, Beach D, Gilman MZ (1992) Growth-regulated expression of D-type cyclin genes in human diploid fibroblasts. Proc Natl Acad Sci USA 89:9910–9914. https://doi.org/10.1073/pnas.89.20.9910
doi: 10.1073/pnas.89.20.9910
pubmed: 1409718
pmcid: 50243
Han Y, Xia G, Tsang BK (2013) Regulation of cyclin D2 expression and degradation by follicle-stimulating hormone during rat granulosa cell proliferation in vitro. Biol Reprod 88:57. https://doi.org/10.1095/biolreprod.112.105106
doi: 10.1095/biolreprod.112.105106
pubmed: 23349233
Guo H, Liang Z, Zheng P, Li L, Xian J, Zhu X (2021) Effects of nonylphenol exposure on histological changes, apoptosis and time-course transcriptome in gills of white shrimp Litopenaeus vannamei. Sci Total Environ 781:146731. https://doi.org/10.1016/j.scitotenv.2021.146731
doi: 10.1016/j.scitotenv.2021.146731
pubmed: 33794460
Feng SL, Li XN, Chen YG, Li RQ, Bai ZY, Li WJ Screening and expression of cyclins gene in Hyriopsis cumingii. Acta Agric Zhejiangensis 33:2041–2050
Eyal-Giladi H, Kochav S (1976) From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick I General morphology. Dev Biol 49:321–337. https://doi.org/10.1016/0012-1606(76)90178-0
doi: 10.1016/0012-1606(76)90178-0
pubmed: 944662
Lin YQ, Geng JG, Yang XF, Wang LJ (2010) Cell cycle control during the early stages of chick embryo development. J Guangdong Pharm Univ 26:648–652
Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, Dubus P, Barbacid M (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504. https://doi.org/10.1016/j.cell.2004.08.002
doi: 10.1016/j.cell.2004.08.002
pubmed: 15315761
Sierant M, Piotrzkowska D, Nawrot B (2015) RNAi mediated silencing of cyclin-dependent kinases of G1 phase slows down the cell-cycle progression and reduces apoptosis. Acta Neurobiol Exp (Wars) 75:36–47
Topacio BR, Zatulovskiy E, Cristea S, Xie S, Tambo CS, Rubin SM, Sage J, Koivomagi M, Skotheim JM (2019) Cyclin D-Cdk 4,6 drives cell-cycle progression via the retinoblastoma protein’s C-terminal helix. Mol Cell 74(758–770):e754. https://doi.org/10.1016/j.molcel.2019.03.020
doi: 10.1016/j.molcel.2019.03.020
Takano Y, Kato Y, van Diest PJ, Masuda M, Mitomi H, Okayasu I (2000) Cyclin D2 overexpression and lack of p27 correlate positively and cyclin E inversely with a poor prognosis in gastric cancer cases. Am J Pathol 156:585–594. https://doi.org/10.1016/s0002-9440(10)64763-3
doi: 10.1016/s0002-9440(10)64763-3
pubmed: 10666388
pmcid: 1850035
Liu XC, Guan CN, Xu N, Zhu Ge XL, Yang HL (2020) Cloning and function identification of D2-type cyclin gene in ’ 741 Poplar ’. Acta Botan Boreali-Occiden Sin 40:0547–0556
Fujii T, Sato K, Matsui N, Furuichi T, Takenouchi S, Nishikubo N, Suzuki Y, Kawai S, Demura T, Kajita S, Katayama Y (2012) Enhancement of secondary xylem cell proliferation by Arabidopsis cyclin D overexpression in tobacco plants. Plant Cell Rep 31:1573–1580. https://doi.org/10.1007/s00299-012-1271-7
doi: 10.1007/s00299-012-1271-7
pubmed: 22547095
Fiaschi-Taesch NM, Salim F, Kleinberger J, Troxell R, Cozar-Castellano I, Selk K, Cherok E, Takane KK, Scott DK, Stewart AF (2010) Induction of human beta-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes 59:1926–1936. https://doi.org/10.2337/db09-1776
doi: 10.2337/db09-1776
pubmed: 20668294
pmcid: 2911074
Chen H, Kleinberger JW, Takane KK, Salim F, Fiaschi-Taesch N, Pappas K, Parsons R, Jiang J, Zhang Y, Liu H, Wang P (2015) Augmented Stat5 signaling bypasses multiple impediments to lactogen-mediated proliferation in human β-cells. Diabetes 64(11):3784–97
doi: 10.2337/db15-0083