Genetic basis of job attainment characteristics and the genetic sharing with other SES indices and well-being.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
26 05 2022
Historique:
received: 03 11 2021
accepted: 07 04 2022
entrez: 26 5 2022
pubmed: 27 5 2022
medline: 31 5 2022
Statut: epublish

Résumé

Job attainment is an important component of socioeconomic status (SES). There is currently a paucity of genomic research on an individual's job attainment, as well as how it is related to other SES variables and overall well-being at the whole genome level. By incorporating O*NET occupational information into the UK Biobank database, we performed GWAS analyses of six major job attainment characteristics-job complexity, autonomy, innovation, information demands, emotional demands, and physical demands-on 219,483 individuals of European ancestry. The job attainment characteristics had moderate to high pairwise genetic correlations, manifested by three latent factors: cognitive, emotional, and physical requirements. The latent factor of overall job requirement underlying the job attainment traits represented a critical genetic path from educational attainment to income (P < 0.001). Job attainment characteristics were genetically positively correlated with positive health and well-being outcomes (i.e., subject well-being, overall health rating, number of non-cancer illnesses etc. (|r

Identifiants

pubmed: 35618877
doi: 10.1038/s41598-022-12905-y
pii: 10.1038/s41598-022-12905-y
pmc: PMC9135765
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

8902

Subventions

Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : U01 AG071450
Pays : United States
Organisme : NICHD NIH HHS
ID : P01 HD031921
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG071448
Pays : United States
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s).

Références

Adler, N. E. et al. Socioeconomic status and health: The challenge of the gradient. Am. Psychol. 49, 15–24 (1994).
pubmed: 8122813 doi: 10.1037/0003-066X.49.1.15
Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations among race, socioeconomic status, and health: Patterns and prospects. Health Psychol. 35, 407–411 (2016).
pubmed: 27018733 pmcid: 4817358 doi: 10.1037/hea0000242
Adler, N. E. & Ostrove, J. M. Socioeconomic status and health: What we know and what we don’t. Ann. N. Y. Acad. Sci. 896, 3–15 (1999).
pubmed: 10681884 doi: 10.1111/j.1749-6632.1999.tb08101.x
De Matteis, S. et al. Occupations associated with COPD risk in the large population-based UK Biobank cohort study. Occup. Environ. Med. 73, 378–384 (2016).
pubmed: 27001997 doi: 10.1136/oemed-2015-103406
Duncan, G. J., Daly, M. C., McDonough, P. & Williams, D. R. Optimal indicators of socioeconomic status for health research. Am. J. Public Health 92, 1151–1157 (2002).
pubmed: 12084700 pmcid: 1447206 doi: 10.2105/AJPH.92.7.1151
Shavers, V. L. Measurement of socioeconomic status in health disparities research. J. Natl. Med. Assoc. 99, 1013 (2007).
pubmed: 17913111 pmcid: 2575866
Hill, W. D. et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nat. Commun. 10, 573691 (2019).
doi: 10.1038/s41467-019-13585-5
Lee, J. J. et al. Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment. Nat. Genet. 50, 1112–1121 (2018).
pubmed: 30038396 pmcid: 6393768 doi: 10.1038/s41588-018-0147-3
Spector, P. E. & Jex, S. M. Relations of job characteristics from multiple data sources with employee affect, absence, turnover intentions, and health. J. Appl. Psychol. 76, 46–53 (1991).
pubmed: 2016216 doi: 10.1037/0021-9010.76.1.46
Marmot, M. G., Bosma, H., Hemingway, H., Brunner, E. & Stansfeld, S. Contribution of job control and other risk factors to social variations in coronary heart disease incidence. Lancet 350, 235–239 (1997).
pubmed: 9242799 doi: 10.1016/S0140-6736(97)04244-X
Braveman, P. A. et al. Socioeconomic status in health research: One size does not fit all. J. Am. Med. Assoc. 294, 2879–2888 (2005).
doi: 10.1001/jama.294.22.2879
Li, W. D., Zhang, Z., Song, Z. & Arvey, R. D. It is also in our nature: Genetic influences on work characteristics and in explaining their relationships with well-being. J. Organ. Behav. 37, 868–888 (2016).
doi: 10.1002/job.2079
Dierdorff, E. C. & Morgeson, F. P. Consensus in work role requirements: The influence of discrete occupational context on role expectations. J. Appl. Psychol. 92, 1228–1241 (2007).
pubmed: 17845082 doi: 10.1037/0021-9010.92.5.1228
Glomb, T. M., Kammeyer-Mueller, J. D. & Rotundo, M. Emotional labor demands and compensating wage differentials. J. Appl. Pychol. 89, 700–714 (2004).
doi: 10.1037/0021-9010.89.4.700
Judge, T. A., Bono, J. E. & Locke, E. A. Personality and job satisfaction: The mediating role of job characteristics. J. Appl. Psychol. 85, 237–249 (2000).
pubmed: 10783540 doi: 10.1037/0021-9010.85.2.237
Judge, T. A. & Livingston, B. A. Is the gap more than gender? A longitudinal analysis of gender, gender role orientation, and earnings. J. Appl. Psychol. 93, 994 (2008).
pubmed: 18808221 doi: 10.1037/0021-9010.93.5.994
Frey, C. B. & Osborne, M. A. The future of employment: How susceptible are jobs to computerisation?. Technol. Forecast. Soc. Change. 114, 254–280 (2017).
doi: 10.1016/j.techfore.2016.08.019
Goos, M., Manning, A. & Salomons, A. Explaining job polarization: Routine-biased technological change and offshoring. Am. Econ. Rev. 104, 2509–2526 (2014).
doi: 10.1257/aer.104.8.2509
Karasek, R. A. Jr. Job demands, job decision latitude, and mental strain: Implications for job redesign. Admin. Sci. Q. 24, 285–308 (1979).
doi: 10.2307/2392498
Karasek, R. et al. The Job Content Questionnaire (JCQ): An instrument for internationally comparative assessments of psychosocial job characteristics. J. Occup. Health Psychol. 3, 322–355 (1998).
pubmed: 9805280 doi: 10.1037/1076-8998.3.4.322
McCormick, E. J., Jeanneret, P. R. & Mecham, R. C. A study of job characteristics and job dimensions as based on the Position Analysis Questionnaire (PAQ). J. Appl. Psychol. 56, 347–368 (1972).
doi: 10.1037/h0033099
Parker, S. K., Morgeson, F. P. & Johns, G. One hundred years of work design research: Looking back and looking forward. J. Appl. Psychol. 102, 403–420 (2017).
pubmed: 28182465 doi: 10.1037/apl0000106
Desmarais, L. B. & Sackett, P. R. Investigating a cognitive complexity hierarchy of jobs. J. Vocat. Behav. 43, 279–297 (1993).
doi: 10.1006/jvbe.1993.1048
Wilk, S. L. & Sackett, P. R. Longitudinal analysis of ability-job complexity fit and job change. Pers. Psychol. 49, 937–967 (1996).
doi: 10.1111/j.1744-6570.1996.tb02455.x
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).
pubmed: 21407268 pmcid: 3137506 doi: 10.1038/ejhg.2011.39
Linnér, R. K. et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 51, 245–257 (2019).
pmcid: 6713272 doi: 10.1038/s41588-018-0309-3
Luciano, M. et al. Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nat. Genet. 50, 6 (2018).
pubmed: 29255261 doi: 10.1038/s41588-017-0013-8
Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).
pubmed: 29942086 pmcid: 6411041 doi: 10.1038/s41588-018-0152-6
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236 (2015).
pubmed: 26414676 pmcid: 4797329 doi: 10.1038/ng.3406
Hadden, W. C., Kravets, N. & Muntaner, C. Descriptive dimensions of US occupations with data from the O* NET. Soc. Sci. Res. 33, 64–78 (2004).
doi: 10.1016/S0049-089X(03)00039-5
Kilbourne, B., England, P. & Beron, K. Effects of individual, occupational, and industrial characteristics on earnings: Intersections of race and gender. Soc. Forces 72, 1149–1176 (1994).
doi: 10.2307/2580296
Kline, P. An Easy Guide to Factor Analysis (Routledge, 2014).
Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1–11 (2017).
doi: 10.1038/s41467-017-01261-5
Nofal, A. M., Nicolaou, N., Symeonidou, N. & Shane, S. Biology and management: A review, critique, and research agenda. J. Manag. 44, 7–31 (2018).
Reuter, M. et al. Personality and biological markers of creativity. Eur. J. Pers. Publ. Eur. Assoc. Pers. Psychol. 19, 83–95 (2005).
Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).
pubmed: 30962613 pmcid: 6520146 doi: 10.1038/s41562-019-0566-x
M. Croon, In Latent Variable and Latent Structure Modeling (eds. Marcoulides, G. & Moustaki, I.) 195–223 (Erlbaum, 2002).
Deary, I. J., Harris, S. E. & Hill, W. D. What genome-wide association studies reveal about the association between intelligence and physical health, illness, and mortality. Curr. Opin. Psychol. 27, 6–12 (2019).
pubmed: 30071465 pmcid: 6624475 doi: 10.1016/j.copsyc.2018.07.005
Hagenaars, S. P. et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N = 112 151) and 24 GWAS consortia. Mol. Psychiatry 21, 1624–1632 (2016).
pubmed: 26809841 pmcid: 5078856 doi: 10.1038/mp.2015.225
Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat. Genet. 49, 1107 (2017).
pubmed: 28530673 pmcid: 5665562 doi: 10.1038/ng.3869
Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).
pubmed: 27225129 pmcid: 4883595 doi: 10.1038/nature17671
Rietveld, C. A. et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340, 1467–1471 (2013).
pubmed: 23722424 pmcid: 3751588 doi: 10.1126/science.1235488
Quaye, L., Nicolaou, N., Shane, S. & Mangino, M. A discovery genome-wide association study of entrepreneurship. Int. J. Dev. Sustain. 6, 127–135 (2012).
Van der Loos, M. J. et al. The molecular genetic architecture of self-employment. PLoS One 8, (2013).
Barone, C. & van de Werfhorst, H. Education, cognitive skills and earnings in comparative perspective. Int. Sociol. 26, 483–502 (2011).
doi: 10.1177/0268580910393045
Schmidt, F. L. & Hunter, J. General mental ability in the world of work: Occupational attainment and job performance. J. Pers. Soc. Psychol. 86, 162–173 (2004).
pubmed: 14717634 doi: 10.1037/0022-3514.86.1.162
Kuncel, N. R., Hezlett, S. A. & Ones, D. S. Academic performance, career potential, creativity, and job performance: Can one construct predict them all?. J. Pers. Soc. Psychol. 86, 148–161 (2004).
pubmed: 14717633 doi: 10.1037/0022-3514.86.1.148
Wilk, S. L., Desmarais, L. B. & Sackett, P. R. Gravitation to jobs commensurate with ability: Longitudinal and cross-sectional tests. J. Appl. Psychol. 80, 79–85 (1995).
doi: 10.1037/0021-9010.80.1.79
Hunter, J. E. Cognitive ability, cognitive aptitudes, job knowledge, and job performance. J. Vocat. Behav. 29, 340–362 (1986).
doi: 10.1016/0001-8791(86)90013-8
Plomin, R. & von Stumm, S. The new genetics of intelligence. Nat. Rev. Genet. 19, 148–159 (2018).
pubmed: 29335645 pmcid: 5985927 doi: 10.1038/nrg.2017.104
Van Iddekinge, C. H., Aguinis, H., Mackey, J. D. & DeOrtentiis, P. S. A meta-analysis of the interactive, additive, and relative effects of cognitive ability and motivation on performance. J. Manag. 44, 249–279 (2018).
Judge, T. A., Higgins, C. A., Thoresen, C. J. & Barrick, M. R. The big five personality traits, general mental ability, and career success across the life span. Pers. Psychol. 52, 621–652 (1999).
doi: 10.1111/j.1744-6570.1999.tb00174.x
Bhave, D. P. & Glomb, T. M. Emotional labour demands, wages and gender: A within-person, between-jobs study. J. Occup. Organ. Psychol. 82, 683–707 (2009).
doi: 10.1348/096317908X360684
van der Linden, D. et al. Overlap between the general factor of personality and trait emotional intelligence: A genetic correlation study. Behav. Genet. 48, 147–154 (2018).
pubmed: 29264815 doi: 10.1007/s10519-017-9885-8
Vernon, P. A., Petrides, K., Bratko, D. & Schermer, J. A. A behavioral genetic study of trait emotional intelligence. Emotion 8, 635–642 (2008).
pubmed: 18837613 doi: 10.1037/a0013439
Plomin, R. & Deary, I. J. Genetics and intelligence differences: Five special findings. Mol. Psychiatry 20, 98–108 (2015).
pubmed: 25224258 doi: 10.1038/mp.2014.105
Konrad, A. M., Konrad, A. M., Ritchie, J. E., Lieb, P. & Corrigall, E. Sex differences and similarities in job attribute preferences: A meta-analysis. Psychol. Bull. 126, 593–641 (2000).
pubmed: 10900998 doi: 10.1037/0033-2909.126.4.593
Joshi, A., Son, J. & Roh, H. When can women close the gap? A meta-analytic test of sex differences in performance and rewards. Acad. Manag. J. 58, 1516–1545 (2015).
doi: 10.5465/amj.2013.0721
Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).
pubmed: 32042192 pmcid: 7025895 doi: 10.1038/s41591-020-0751-5
Lumish, H. S., O’Reilly, M. & Reilly, M. P. Sex differences in genomic drivers of adipose distribution and related cardiometabolic disorders. Arterioscler. Thromb. Vasc. Biol. 40, 45–60 (2020).
pubmed: 31747800 doi: 10.1161/ATVBAHA.119.313154
Slocum, J. W. & Cron, W. L. Job attitudes and performance during three career stages. J. Vocat. Behav. 26, 126–145 (1985).
doi: 10.1016/0001-8791(85)90013-2
Super, D. E. A life-span, life-space approach to career development. J. Vocat. Behav. 16, 282–298 (1980).
doi: 10.1016/0001-8791(80)90056-1
Smeland, O. B. et al. Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Mol. Psychiatry 29, 1–10 (2019).
Hill, W. D., Harris, S. E. & Deary, I. J. What genome-wide association studies reveal about the association between intelligence and mental health. Curr. Opin. Psychol. 27, 25–30 (2019).
pubmed: 30110665 doi: 10.1016/j.copsyc.2018.07.007
Sara, J. D. et al. Association between Work-Related stress and coronary heart disease: A review of prospective studies through the job strain, Effort-Reward balance, and organizational justice models. J. Am. Heart Assoc. 7, e008073 (2018).
pubmed: 29703810 pmcid: 6015274 doi: 10.1161/JAHA.117.008073
Duncan, G. J. & Magnuson, K. Socioeconomic status and cognitive functioning: Moving from correlation to causation. Wiley Interdiscipl. Rev. Cogn. Sci. 3, 377–386 (2012).
doi: 10.1002/wcs.1176
Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).
pubmed: 28641372 pmcid: 5860371 doi: 10.1093/aje/kwx246
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
Sudlow, C. et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379 pmcid: 4380465 doi: 10.1371/journal.pmed.1001779
Peterson, N. G., Mumford, M. D., Borman, W. C., Jeanneret, P., Fleishman, E. A. An Occupational Information System for the 21st Century: The Development of O* NET. (American Psychological Association, 1999).
Peterson, N. G. et al. Understanding work using the Occupational Information Network (O* NET): Implications for practice and research. Pers. Psychol. 54, 451–492 (2001).
doi: 10.1111/j.1744-6570.2001.tb00100.x
Jones, R. & Elias, P. CASCOT: Computer-Assisted Structured Coding Tool (Warwick Institute for Employment Research, University of Warwick, 2004).
Dierdorff, E. C. & Ellington, J. K. It’s the nature of the work: Examining behavior-based sources of work-family conflict across occupations. J. Appl. Psychol. 93, 883–892 (2008).
pubmed: 18642990 doi: 10.1037/0021-9010.93.4.883
Judge, T. A. & Zapata, C. P. The person–situation debate revisited: Effect of situation strength and trait activation on the validity of the Big Five personality traits in predicting job performance. Acad. Manag. J. 58, 1149–1179 (2015).
doi: 10.5465/amj.2010.0837
Amabile, T. M. A model of creativity and innovation in organizations. Res. Organ. Behav. 10, 123–167 (1988).
Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284 (2015).
pubmed: 25642633 pmcid: 4342297 doi: 10.1038/ng.3190
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369 (2012).
pubmed: 22426310 pmcid: 3593158 doi: 10.1038/ng.2213
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164–e164 (2010).
pubmed: 20601685 pmcid: 2938201 doi: 10.1093/nar/gkq603
Harris, K. M. The Add Health Study: Design and Accomplishments. 1–22 (Carolina Population Center, University of North Carolina at Chapel Hill, 2013).
Choi, S. W. & O’Reilly, P. F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 8, giz082 (2019).
pubmed: 31307061 pmcid: 6629542 doi: 10.1093/gigascience/giz082
Reimand, J. et al. g: Profiler—A web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 44, W83–W89 (2016).
pubmed: 27098042 pmcid: 4987867 doi: 10.1093/nar/gkw199
Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).
pubmed: 27089181 pmcid: 4884152 doi: 10.1038/ng.3552
Harris, S. E. et al. Molecular genetic contributions to self-rated health. Int. J. Epidemiol. 46, 994–1009 (2017).
pubmed: 27864402
Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 50, 920–927 (2018).
pubmed: 29942085 doi: 10.1038/s41588-018-0151-7
Deelen, J. et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat. Commun. 10, 1–14 (2019).
doi: 10.1038/s41467-019-11558-2
Erzurumluoglu, A. M. et al. Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Mol. Psychiatry 25, 2392–2409 (2020).
pubmed: 30617275 doi: 10.1038/s41380-018-0313-0
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in∼ 700,000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).
pubmed: 30124842 pmcid: 6488973 doi: 10.1093/hmg/ddy271
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).
Hill, W. D. et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nat. Commun. 10, 1–16 (2019).
doi: 10.1038/s41467-019-13585-5
Sobel, M. E. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol. Methodol. 13, 290–312 (1982).
doi: 10.2307/270723
Hackman, J. R. & Oldham, G. R. Development of the job diagnostic survey. J. Appl. Psychol. 60, 159–170 (1975).
doi: 10.1037/h0076546
Karasek, R., Baker, D., Marxer, F., Ahlbom, A. & Theorell, T. Job decision latitude, job demands, and cardiovascular disease: A prospective study of Swedish men. Am. J. Public Health 71, 694–705 (1981).
pubmed: 7246835 pmcid: 1619770 doi: 10.2105/AJPH.71.7.694

Auteurs

Zhaoli Song (Z)

Department of Management and Organization, National University of Singapore, Singapore, Singapore. bizszl@nus.edu.sg.

Wen-Dong Li (WD)

Department of Management, The Chinese University of Hong Kong, Hong Kong, China.

Hengtong Li (H)

Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore.

Xin Zhang (X)

Department of Management, The Chinese University of Hong Kong, Hong Kong, China.

Nan Wang (N)

Department of Management, Lingnan University, Hong Kong, China.

Qiao Fan (Q)

Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore. qiao.fan@duke-nus.edu.sg.

Articles similaires

Humans Male Female Aged Feasibility Studies
Humans Uganda Cross-Sectional Studies Middle Aged Adult
Humans Quality of Life COVID-19 Cross-Sectional Studies Male

Classifications MeSH