Tractography of Porcine Meniscus Microstructure Using High-Resolution Diffusion Magnetic Resonance Imaging.


Journal

Frontiers in endocrinology
ISSN: 1664-2392
Titre abrégé: Front Endocrinol (Lausanne)
Pays: Switzerland
ID NLM: 101555782

Informations de publication

Date de publication:
2022
Historique:
received: 15 02 2022
accepted: 04 04 2022
entrez: 27 5 2022
pubmed: 28 5 2022
medline: 31 5 2022
Statut: epublish

Résumé

To noninvasively evaluate the three-dimensional collagen fiber architecture of porcine meniscus using diffusion MRI, meniscal specimens were scanned using a 3D diffusion-weighted spin-echo pulse sequence at 7.0 T. The collagen fiber alignment was revealed in each voxel and the complex 3D collagen network was visualized for the entire meniscus using tractography. The proposed automatic segmentation methods divided the whole meniscus to different zones (Red-Red, Red-White, and White-White) and different parts (anterior, body, and posterior). The diffusion tensor imaging (DTI) metrics were quantified based on the segmentation results. The heatmap was generated to investigate the connections among different regions of meniscus. Strong zonal-dependent diffusion properties were demonstrated by DTI metrics. The fractional anisotropy (FA) value increased from 0.13 (White-White zone) to 0.26 (Red-Red zone) and the radial diffusivity (RD) value changed from 1.0 × 10

Identifiants

pubmed: 35620393
doi: 10.3389/fendo.2022.876784
pmc: PMC9127075
doi:

Substances chimiques

Collagen 9007-34-5

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

876784

Subventions

Organisme : NIBIB NIH HHS
ID : P41 EB015897
Pays : United States

Informations de copyright

Copyright © 2022 Shen, Zhao, Qi, Cofer, Johnson and Wang.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Osteoarthritis Cartilage. 2013 Aug;21(8):1083-91
pubmed: 23680878
J Magn Reson Imaging. 2015 Apr;41(4):870-83
pubmed: 25045018
Am J Sports Med. 2014 Aug;42(8):1847-56
pubmed: 24812196
Magn Reson Med. 2020 Aug;84(2):908-919
pubmed: 31962373
Am J Sports Med. 2006 Jul;34(7):1170-5
pubmed: 16685089
Skeletal Radiol. 2016 Dec;45(12):1649-1660
pubmed: 27639388
Osteoarthritis Cartilage. 2008 Dec;16(12):1433-41
pubmed: 18786841
Nat Rev Rheumatol. 2012 Oct;8(10):622-30
pubmed: 22782003
J Magn Reson Imaging. 2015 Jun;41(6):1487-504
pubmed: 25865215
Neurology. 2005 Nov 22;65(10):1526-32
pubmed: 16301477
Osteoarthritis Cartilage. 2006 Sep;14(9):875-81
pubmed: 16635581
Eur Radiol. 2019 Oct;29(10):5664-5672
pubmed: 30888480
NMR Biomed. 2019 Apr;32(4):e3941
pubmed: 29863793
Anat Embryol (Berl). 1998 Apr;197(4):317-24
pubmed: 9565324
Radiology. 2008 Nov;249(2):591-600
pubmed: 18936315
Magn Reson Med. 2018 Apr;79(4):2379-2391
pubmed: 28733975
Magn Reson Med. 2005 May;53(5):993-8
pubmed: 15844163
Acta Biomater. 2017 May;54:356-366
pubmed: 28242455
Neuron. 2003 Dec 4;40(5):885-95
pubmed: 14659088
Brain Struct Funct. 2019 Jun;224(5):1797-1813
pubmed: 31006072
Magn Reson Med. 2018 Dec;80(6):2464-2474
pubmed: 29732609
Orthop J Sports Med. 2015 Oct 23;3(10):2325967115611386
pubmed: 26779547
J Orthop Res. 2020 Dec;38(12):2709-2720
pubmed: 32301519
Clin Sports Med. 1991 Jul;10(3):529-48
pubmed: 1868558
Eur Radiol. 2019 May;29(5):2598-2607
pubmed: 30382348
Sci Rep. 2019 Dec 5;9(1):18448
pubmed: 31804577
J Orthop Res. 2020 Nov;38(11):2383-2389
pubmed: 32492207
Radiographics. 2014 Jul-Aug;34(4):981-99
pubmed: 25019436
IEEE Trans Med Imaging. 2010 Sep;29(9):1626-35
pubmed: 20304721
Radiology. 2000 Oct;217(1):193-200
pubmed: 11012444
Osteoarthritis Cartilage. 2018 Apr;26(4):580-587
pubmed: 29269326
Magn Reson Med. 2019 Jun;81(6):3775-3786
pubmed: 30671998
Radiology. 2017 Jul;284(1):210-218
pubmed: 28156202
Radiology. 2013 Mar;266(3):831-41
pubmed: 23238155
Phys Med Biol. 2015 Nov 21;60(22):8709-21
pubmed: 26509475
Eur Radiol. 2020 Apr;30(4):2231-2240
pubmed: 31844957
Osteoarthritis Cartilage. 2011 Aug;19(8):990-1002
pubmed: 21645627
AJNR Am J Neuroradiol. 2008 Apr;29(4):632-41
pubmed: 18339720
Artif Intell Med. 2019 Jun;97:118-130
pubmed: 30527276
J Magn Reson Imaging. 2017 Nov;46(5):1423-1432
pubmed: 28194829
BMC Musculoskelet Disord. 2015 Feb 21;16:35
pubmed: 25886863
Osteoarthritis Cartilage. 2018 May;26(5):680-688
pubmed: 29526784
Pediatr Radiol. 2019 Aug;49(9):1192-1200
pubmed: 31177318

Auteurs

Jikai Shen (J)

Department of Biomedical Engineering, Duke University, Durham, NC, United States.
School of Life Sciences, Westlake University, Hangzhou, China.

Qi Zhao (Q)

Physical Education Institute, Jimei University, Xiamen, China.

Yi Qi (Y)

Department of Radiology, Duke University School of Medicine, Durham, NC, United States.

Gary Cofer (G)

Department of Radiology, Duke University School of Medicine, Durham, NC, United States.

G Allan Johnson (GA)

Department of Biomedical Engineering, Duke University, Durham, NC, United States.
Department of Radiology, Duke University School of Medicine, Durham, NC, United States.

Nian Wang (N)

Department of Radiology, Duke University School of Medicine, Durham, NC, United States.
Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH