Differences in composition of interdigital skin microbiota predict sheep and feet that develop footrot.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 05 2022
Historique:
received: 17 12 2021
accepted: 12 05 2022
entrez: 27 5 2022
pubmed: 28 5 2022
medline: 1 6 2022
Statut: epublish

Résumé

Footrot has a major impact on health and productivity of sheep worldwide. The current paradigm for footrot pathogenesis is that physical damage to the interdigital skin (IDS) facilitates invasion of the essential pathogen Dichelobacter nodosus. The composition of the IDS microbiota is different in healthy and diseased feet, so an alternative hypothesis is that changes in the IDS microbiota facilitate footrot. We investigated the composition and diversity of the IDS microbiota of ten sheep, five that did develop footrot and five that did not (healthy) at weekly intervals for 20 weeks. The IDS microbiota was less diverse on sheep 2 + weeks before they developed footrot than on healthy sheep. This change could be explained by only seven of > 2000 bacterial taxa detected. The incubation period of footrot is 8-10 days, and there was a further reduction in microbial diversity on feet that developed footrot in that incubation period. We conclude that there are two stages of dysbiosis in footrot: the first predisposes sheep to footrot and the second occurs in feet during the incubation of footrot. These findings represent a step change in our understanding of the role of the IDS microbiota in footrot pathogenesis.

Identifiants

pubmed: 35624131
doi: 10.1038/s41598-022-12772-7
pii: 10.1038/s41598-022-12772-7
pmc: PMC9142565
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8931

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M012980/1
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s).

Références

J Infect Dis. 2020 Nov 13;222(12):2082-2092
pubmed: 32515473
Anaerobe. 2011 Apr;17(2):73-7
pubmed: 21397709
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Front Vet Sci. 2021 Aug 16;8:713927
pubmed: 34485440
Appl Environ Microbiol. 2006 Jul;72(7):5069-72
pubmed: 16820507
J Comp Pathol. 1969 Apr;79(2):217-27
pubmed: 5814119
NPJ Vaccines. 2016 Dec 01;1:16022
pubmed: 29263860
Nat Rev Microbiol. 2012 Oct;10(10):717-25
pubmed: 22941505
Mucosal Immunol. 2021 Jan;14(1):113-124
pubmed: 32433514
Cell Host Microbe. 2011 Nov 17;10(5):497-506
pubmed: 22036469
J Vet Intern Med. 2010 Mar-Apr;24(2):420-5
pubmed: 20051002
Matern Health Neonatol Perinatol. 2015 Feb 11;1:6
pubmed: 27057323
Dig Dis Sci. 2020 Mar;65(3):674-685
pubmed: 32002757
Sci Rep. 2020 May 14;10(1):8002
pubmed: 32409668
Prev Vet Med. 2015 Nov 1;122(1-2):121-8
pubmed: 26435034
Vet Rec. 2017 Nov 11;181(19):511
pubmed: 29051311
Sci Rep. 2020 Oct 8;10(1):16823
pubmed: 33033301
PLoS Comput Biol. 2013;9(1):e1002863
pubmed: 23326225
Vet Microbiol. 2015 Apr 17;176(3-4):321-7
pubmed: 25742734
Rev Sci Tech. 2013 Dec;32(3):869-77
pubmed: 24761738
J Comp Pathol. 1969 Apr;79(2):207-15
pubmed: 5813556
J Med Case Rep. 2011 Sep 20;5:468
pubmed: 21933406
Vet J. 2014 Sep;201(3):295-301
pubmed: 24973007
Vet Microbiol. 2011 Nov 21;153(1-2):59-66
pubmed: 21596496
Nat Rev Microbiol. 2018 Dec;16(12):745-759
pubmed: 30301974
Gut Microbes. 2021 Jan-Dec;13(1):1-20
pubmed: 33522391
PeerJ. 2019 Mar 26;7:e6657
pubmed: 30941274
Vet Microbiol. 2017 May;203:271-274
pubmed: 28619155
Prev Vet Med. 2019 Dec 1;173:104801
pubmed: 31683188
Vet Rec. 2016 Sep 3;179(9):228
pubmed: 27317761
Environ Microbiol. 2005 May;7(5):698-714
pubmed: 15819852
Bioinformatics. 2010 Oct 1;26(19):2460-1
pubmed: 20709691
J Clin Microbiol. 2013 Jun;51(6):1973-6
pubmed: 23536403
Vet Microbiol. 2019 Sep;236:108378
pubmed: 31500737
Aust Vet J. 1991 Feb;68(2):45-9
pubmed: 2025200
Aust Vet J. 1968 May;44(5):235-40
pubmed: 5690158
Prev Vet Med. 2010 Aug 1;96(1-2):65-73
pubmed: 20594602
J Periodontol. 1994 Nov;65(11):1073-8
pubmed: 7853132
ISME J. 2011 Sep;5(9):1426-37
pubmed: 21430786
Cell Host Microbe. 2014 Jun 11;15(6):768-78
pubmed: 24922578
Appl Environ Microbiol. 1993 Mar;59(3):695-700
pubmed: 7683183
Bioinformatics. 2015 Nov 1;31(21):3476-82
pubmed: 26139637
Appl Environ Microbiol. 2001 Feb;67(2):504-13
pubmed: 11157210
BMC Vet Res. 2012 Jan 31;8:12
pubmed: 22293088
J Clin Microbiol. 2014 Sep;52(9):3465-7
pubmed: 24989608
Vet Rec. 1989 Aug 5;125(6):128-30
pubmed: 2773254
PLoS Comput Biol. 2014 Apr 03;10(4):e1003531
pubmed: 24699258
Prev Vet Med. 2014 Jul 1;115(1-2):48-55
pubmed: 24703249
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Prev Vet Med. 2010 Aug 1;96(1-2):93-103
pubmed: 20627343
Vet Microbiol. 2005 Jun 15;108(1-2):57-67
pubmed: 15917134
Prev Vet Med. 2017 Apr 1;139(Pt B):123-133
pubmed: 27371994
Methods Enzymol. 2005;397:271-92
pubmed: 16260297
Sci Rep. 2017 Mar 24;7:45220
pubmed: 28338081
Sci Rep. 2019 Oct 8;9(1):14429
pubmed: 31594981
Animal. 2008 Oct;2(10):1427-36
pubmed: 22443900

Auteurs

Rachel Clifton (R)

Institute of Microbiology and Infection, University of Birmingham, Edgbaston, UK. R.Clifton@bham.ac.uk.

Emma M Monaghan (EM)

Institute of Microbiology and Infection, University of Birmingham, Edgbaston, UK.

Martin J Green (MJ)

School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK.

Kevin J Purdy (KJ)

School of Life Sciences, University of Warwick, Coventry, UK.

Laura E Green (LE)

Institute of Microbiology and Infection, University of Birmingham, Edgbaston, UK.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH