Molecular Cross-Talk between Integrins and Cadherins Leads to a Loss of Vascular Barrier Integrity during SARS-CoV-2 Infection.
Cilengitide
RGD motif
SARS-CoV-2 variants of concern
integrin αVβ3
vascular dysfunction
Journal
Viruses
ISSN: 1999-4915
Titre abrégé: Viruses
Pays: Switzerland
ID NLM: 101509722
Informations de publication
Date de publication:
25 04 2022
25 04 2022
Historique:
received:
01
04
2022
revised:
20
04
2022
accepted:
22
04
2022
entrez:
28
5
2022
pubmed:
29
5
2022
medline:
1
6
2022
Statut:
epublish
Résumé
The vascular barrier is heavily injured following SARS-CoV-2 infection and contributes enormously to life-threatening complications in COVID-19. This endothelial dysfunction is associated with the phlogistic phenomenon of cytokine storms, thrombotic complications, abnormal coagulation, hypoxemia, and multiple organ failure. The mechanisms surrounding COVID-19 associated endotheliitis have been widely attributed to ACE2-mediated pathways. However, integrins are emerging as possible receptor candidates for SARS-CoV-2, and their complex intracellular signaling events are essential for maintaining endothelial homeostasis. Here, we showed that the spike protein of SARS-CoV-2 depends on its RGD motif to drive barrier dysregulation by hijacking integrin αVβ3, expressed on human endothelial cells. This triggers the redistribution and internalization of major junction protein VE-Cadherin which leads to the barrier disruption phenotype. Both extracellular and intracellular inhibitors of integrin αVβ3 prevented these effects, similarly to the RGD-cyclic peptide compound Cilengitide, which suggests that the spike protein-through its RGD motif-binds to αVβ3 and elicits vascular leakage events. These findings support integrins as an additional receptor for SARS-CoV-2, particularly as integrin engagement can elucidate many of the adverse endothelial dysfunction events that stem from COVID-19.
Identifiants
pubmed: 35632633
pii: v14050891
doi: 10.3390/v14050891
pmc: PMC9143673
pii:
doi:
Substances chimiques
Cadherins
0
Integrin alphaVbeta3
0
Spike Glycoprotein, Coronavirus
0
spike protein, SARS-CoV-2
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
Front Cardiovasc Med. 2021 Jun 11;8:687783
pubmed: 34179146
Sci Rep. 2021 Oct 14;11(1):20398
pubmed: 34650161
J Biol Chem. 2010 Mar 5;285(10):7045-55
pubmed: 20048167
J Biol Chem. 2022 Mar;298(3):101695
pubmed: 35143839
Circ Res. 2019 Mar 15;124(6):891-903
pubmed: 30707047
JAMA. 2021 Feb 16;325(7):632-644
pubmed: 33475701
Life Sci. 2021 Nov 1;284:119881
pubmed: 34389403
Phys Chem Chem Phys. 2022 Apr 20;24(16):9123-9129
pubmed: 35395667
Mol Biol Cell. 2004 Jun;15(6):2943-53
pubmed: 15075376
Lancet Oncol. 2014 Sep;15(10):1100-8
pubmed: 25163906
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
J Biol Chem. 2005 Sep 9;280(36):31906-12
pubmed: 16027153
JACC Basic Transl Sci. 2021 Jan;6(1):1-8
pubmed: 33102950
Front Cell Infect Microbiol. 2022 Apr 29;12:892323
pubmed: 35619646
PLoS One. 2021 Jun 23;16(6):e0253347
pubmed: 34161337
Tissue Barriers. 2019;7(4):1685844
pubmed: 31690180
Lancet. 2020 Mar 28;395(10229):1054-1062
pubmed: 32171076
PLoS One. 2012;7(5):e37195
pubmed: 22606350
Nature. 2022 Feb;602(7898):671-675
pubmed: 35016199
J Biol Chem. 2003 May 23;278(21):19199-208
pubmed: 12626512