The classical SOS pathway confers natural variation of salt tolerance in maize.
Na+ regulation
SOS pathway
maize
natural variation
salt tolerance
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
received:
20
01
2022
accepted:
19
05
2022
pubmed:
29
5
2022
medline:
28
9
2022
entrez:
28
5
2022
Statut:
ppublish
Résumé
Sodium (Na
Substances chimiques
Sodium
9NEZ333N27
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
479-494Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Références
Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz JO, Nordborg M et al. 2010. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genetics 6: e1001193.
Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R. 2007. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiology 143: 1918-1928.
Campbell MT, Bandillo N, Al Shiblawi FRA, Sharma S, Liu K, Du Q, Schmitz AJ, Zhang C, Véry AA, Lorenz AJ et al. 2017. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content. PLoS Genetics 13: e1006823.
Cao Y, Wang Y, Jiang C. 2021. Recent advancement of molecular understanding for combating salinity stress in maize. In: Hossain MA, Alam M, Seneweera S, Rakshit S, Henry R, eds. Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield. Wallingford, UK: CABI, 247-266.
Cao Y, Zhang M, Liang X, Li F, Shi Y, Yang X, Jiang C. 2020. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nature Communications 11: 186.
Chai S, Ge FR, Zhang Y, Li S. 2019. S-acylation of CBL10/SCaBP8 by PAT10 is crucial for its tonoplast association and function in salt tolerance. Journal of Integrative Plant Biology 62: 718-722.
Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z. 2021. Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology 63: 53-78.
Chen X, Gu Z, Xin D, Hao L, Liu C, Huang J, Ma B, Zhang H. 2011. Identification and characterization of putative CIPK genes in maize. Journal of Genetics and Genomics 38: 77-87.
Chu M, Chen P, Meng S, Xu P, Lan W. 2020. The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1. Journal of Integrative Plant Biology 63: 528-542.
Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI. 2014. Plant salt tolerance mechanisms. Trends in Plant Science 19: 371-379.
El Mahi H, Pérez-Hormaeche J, De Luca A, Villalta I, Espartero J, Gámez-Arjona F, Fernández JL, Bundó M, Mendoza I, Mieulet D et al. 2019. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiology 180: 1046-1065.
Feki K, Quintero FJ, Pardo JM, Masmoudi K. 2011. Regulation of durum wheat Na+/H + exchanger TdSOS1 by phosphorylation. Plant Molecular Biology 76: 545-556.
Flowers TJ. 2004. Improving crop salt tolerance. Journal of Experimental Botany 55: 307-319.
Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK. 2004. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16: 435-449.
Halfter U, Ishitani M, Zhu JK. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences, USA 97: 3735-3740.
Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D et al. 2018. ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences, USA 115: E334-E341.
Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R. 2006. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiology 142: 1718-1727.
Ismail AM, Horie T. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology 68: 405-434.
Jarvis DE, Ryu CH, Beilstein MA, Schumaker KS. 2014. Distinct roles for SOS1 in the convergent evolution of salt tolerance in Eutrema salsugineum and Schrenkiella parvula. Molecular Biology and Evolution 31: 2094-2107.
Jia H, Li M, Li W, Liu L, Jian Y, Yang Z, Shen X, Ning Q, Du Y, Zhao R et al. 2020. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications 11: 988.
Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Wu X, Xiang Y, Niu Y, Liu F et al. 2019. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572: 341-346.
Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W et al. 2012. Genome-wide genetic changes during modern breeding of maize. Nature Genetics 44: 812-815.
Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. 2004. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology 134: 43-58.
Kong M, Luo M, Li J, Feng Z, Zhang Y, Song W, Zhang R, Wang R, Wang Y, Zhao J et al. 2021. Genome-wide identification, characterization, and expression analysis of the monovalent cation-proton antiporter superfamily in maize, and functional analysis of its role in salt tolerance. Genomics 113: 1940-1951.
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. 2018. Advances and current challenges in calcium signaling. New Phytologist 218: 414-431.
Li B. 2020. Identification of genes conferring plant salt tolerance using GWAS: current success and perspectives. Plant & Cell Physiology 61: 1419-1426.
Li B, Tester M, Gilliham M. 2017. Chloride on the move. Trends in Plant Science 22: 236-248.
Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589-595.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079.
Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N et al. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics 45: 43-50.
Liang Y, Liu HJ, Yan J, Tian F. 2021. Natural variation in crops: realized understanding, continuing promise. Annual Review of Plant Biology 72: 357-385.
Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y. 2009. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21: 1607-1619.
Luo M, Zhang Y, Li J, Zhang P, Chen K, Song W, Wang X, Yang J, Lu X, Lu B et al. 2021. Molecular dissection of maize seedling salt tolerance using a genome-wide association analysis method. Plant Biotechnology Journal 19: 1937-1951.
Luo X, Wang B, Gao S, Zhang F, Terzaghi W, Dai M. 2019. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. Journal of Integrative Plant Biology 61: 658-674.
Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiology 143: 1001-1012.
Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M et al. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology 30: 360-364.
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681.
Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y et al. 2009. Loss of halophytism by interference with SOS1 expression. Plant Physiology 151: 210-222.
Park HJ, Kim WY, Yun DJ. 2016. A new insight of salt stress signaling in plant. Molecules and Cells 39: 447-459.
Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences, USA 99: 8436-8441.
Quinlan AR, Hall IM. 2010. BEDtools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841-842.
Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK et al. 2011. Activation of the plasma membrane Na+/H+antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences, USA 108: 2611-2616.
Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM. 2002. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences, USA 99: 9061-9066.
Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics 37: 1141-1146.
Rodríguez-Navarro A, Ramos J. 1984. Dual system for potassium transport in Saccharomyces cerevisiae. Journal of Bacteriology 159: 940-945.
Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt DE. 2006. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genetics 2: 1964-1973.
Sánchez-Barrena MJ, Fujii H, Angulo I, Martínez-Ripoll M, Zhu JK, Albert A. 2007. The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Molecular Cell 26: 427-435.
Shi H, Ishitani M, Kim C, Zhu JK. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences, USA 97: 6896-6901.
Shi H, Lee BH, Wu SJ, Zhu JK. 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 21: 81-85.
Shi H, Quintero FJ, Pardo JM, Zhu JK. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14: 465-477.
Singh RK, Kota S, Flowers TJ. 2021. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theoretical and Applied Genetics 134: 3495-3533.
Steinhorst L, Kudla J. 2019. How plants perceive salt. Nature 572: 318-320.
Studer A, Zhao Q, Ross-Ibarra J, Doebley J. 2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics 43: 1160-1163.
Wang Z, Hong Y, Li Y, Shi H, Yao J, Liu X, Wang F, Huang S, Zhu G, Zhu JK. 2021. Natural variations in SISOS1 contribute to the loss of salt tolerance during tomato domestication. Plant Biotechnology Journal 19: 20-22.
Wang Z, Hong Y, Zhu G, Li Y, Niu Q, Yao J, Hua K, Bai J, Zhu Y, Shi H et al. 2020. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter. EMBO Journal 39: e103256.
Wu SJ, Ding L, Zhu JK. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8: 617-627.
Xiang Y, Huang Y, Xiong L. 2007. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiology 144: 1416-1428.
Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 14: 327.
Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH. 2006. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360.
Yang Q, Li Z, Li W, Ku L, Wang C, Ye J, Li K, Yang N, Li Y, Zhong T et al. 2013. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proceedings of the National Academy of Sciences, USA 110: 16969-16974.
Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist 217: 523-539.
Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71: 403-433.
Zhang F, Li L, Jiao Z, Chen Y, Liu H, Chen X, Fu J, Wang G, Zheng J. 2016. Characterization of the calcineurin B-like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Science 253: 118-129.
Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C. 2018. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist 217: 1161-1176.
Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C. 2019. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants 5: 1297-1308.
Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167: 313-324.