Genome-wide analysis of PTR transporters in Candida species and their functional characterization in Candida auris.
Antifungal peptides
Candida auris
Candida species
Nikkomycin Z
Nva-FMDP
PTR/POT transporters
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Jun 2022
Jun 2022
Historique:
received:
17
03
2022
accepted:
16
05
2022
revised:
14
05
2022
pubmed:
2
6
2022
medline:
18
6
2022
entrez:
1
6
2022
Statut:
ppublish
Résumé
The peptide transport (PTR) or proton-dependent oligopeptide transporter (POT) family exploits the inwardly directed proton motive force to facilitate the cellular uptake of di/tripeptides. Interestingly, some representatives are also shown to import peptide-based antifungals in certain Candida species. Thus, the identification and characterization of PTR transporters serve as an essential first step for their potential usage as antifungal peptide uptake systems. Herein, we present a genome-wide inventory of the PTR transporters in five prominent Candida species. Our study identifies 2 PTR transporters each in C. albicans and C. dubliniensis, 1 in C. glabrata, 4 in C. parapsilosis, and 3 in C. auris. Notably, despite all representatives retaining the conserved features seen in the PTR family, there exist two distinct classes of PTR transporters that differ in terms of their sequence identities and lengths of certain extracellular and intracellular segments. Further, we also evaluated the contribution of each PTR protein of the newly emerged multi-drug-resistant C. auris in di/tripeptide uptake. Notably, deletion of two PTR genes BNJ08_003830 and BNJ08_005124 led to a marked reduction in the transport capabilities of several tested di/tripeptides. However, all three genes could complement the role of native PTR2 gene of Saccharomyces cerevisiae, albeit to varied levels. Besides, BNJ08_005124 deletion also resulted in increased resistance toward the peptide-nucleoside drug Nikkomycin Z as well as the glucosamine-6-phosphate synthase inhibitor, L-norvalyl-N3-(4-methoxyfumaroyl)-L-2,3-diaminopropionoic acid (Nva-FMDP), pointing toward its predominant role in their uptake mechanism. Altogether, the study provides an important template for future structure-function investigations of PTR transporters in Candida species. KEY POINTS: • Candida genome encodes for two distinct classes of PTR transporters. • Candida auris encodes for 3 PTR transporters with different specificities. • BNJ08_005124 in C. auris is involved in the uptake of Nikkomycin Z and Nva-FMDP.
Identifiants
pubmed: 35648145
doi: 10.1007/s00253-022-11998-9
pii: 10.1007/s00253-022-11998-9
doi:
Substances chimiques
Antifungal Agents
0
Peptides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4223-4235Subventions
Organisme : Science and Engineering Research Board
ID : SRG/2019/000514
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Banerjee A, Moreno A, Khan MF, Nair R, Sharma S, Sen S, Mondal AK, Pata J, Orelle C, Falson P, Prasad R (2020) Cdr1p highlights the role of the non-hydrolytic ATP-binding site in driving drug translocation in asymmetric ABC pumps. Biochim Biophys Acta Biomembr 1862:183131. https://doi.org/10.1016/j.bbamem.2019.183131
doi: 10.1016/j.bbamem.2019.183131
pubmed: 31734312
Becerra-Rodríguez C, Marsit S, Galeote V (2020) Diversity of oligopeptide transport in yeast and its impact on adaptation to winemaking conditions. Front Genet 11:602
doi: 10.3389/fgene.2020.00602
Bentz ML, Nunnally N, Lockhart SR, Sexton DJ, Berkow EL (2021) Antifungal activity of nikkomycin Z against Candida auris. J Antimicrob Chemother 76:1495–1497. https://doi.org/10.1093/jac/dkab052
doi: 10.1093/jac/dkab052
pubmed: 33677578
Bhat B, Ganai NA, Andrabi SM, Shah RA, Singh A (2017) TM-Aligner: multiple sequence alignment tool for transmembrane proteins with reduced time and improved accuracy. Sci Rep 7:12543. https://doi.org/10.1038/s41598-017-13083-y
doi: 10.1038/s41598-017-13083-y
pubmed: 28970546
pmcid: 5624947
Borah S, Shivarathri R, Kaur R (2011) The Rho1 GTPase-activating protein CgBem2 is required for survival of azole stress in Candida glabrata. J Biol Chem 286(39):34311–34324. https://doi.org/10.1074/jbc.M111.264671
doi: 10.1074/jbc.M111.264671
pubmed: 21832071
pmcid: 3190821
Černáková L, Roudbary M, Brás S, Tafaj S, Rodrigues CF (2021) Candida auris: A quick review on identification, current treatments, and challenges. Int J Mol Sci 22:4470. https://doi.org/10.3390/ijms22094470
doi: 10.3390/ijms22094470
pubmed: 33922907
pmcid: 8123192
Chowdhary A, Sharma C, Meis JF (2017) Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog 13:e1006290. https://doi.org/10.1371/journal.ppat.1006290
doi: 10.1371/journal.ppat.1006290
pubmed: 28542486
pmcid: 5436850
Dunkel N, Hertlein T, Franz R, Reuß O, Sasse C, Schäfer T, Ohlsen K, Morschhäuser J (2013) Roles of different peptide transporters in nutrient acquisition in Candida albicans. Eukaryot Cell 12(4):520–528. https://doi.org/10.1128/EC.00008-13
doi: 10.1128/EC.00008-13
pubmed: 23376942
pmcid: 3623439
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285. https://doi.org/10.1093/nar/gkv1344
doi: 10.1093/nar/gkv1344
pubmed: 26673716
Floden EW, Tommaso PD, Chatzou M, Magis C, Notredame C, Chang J-M (2016) PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases. Nucleic Acids Res 44(W1):W339–W343. https://doi.org/10.1093/nar/gkw300
doi: 10.1093/nar/gkw300
pubmed: 27106060
pmcid: 4987888
Garai P, Chandra K, Chakravortty D (2017) Bacterial peptide transporters: Messengers of nutrition to virulence. Virulence 8:297–309. https://doi.org/10.1080/21505594.2016.1221025
doi: 10.1080/21505594.2016.1221025
pubmed: 27589415
Hauser M, Kauffman S, Naider F, Becker JM (2005) Substrate preference is altered by mutations in the fifth transmembrane domain of Ptr2p, the di/tri-peptide transporter of Saccharomyces cerevisiae. Mol Membr Biol 22:215–227. https://doi.org/10.1080/09687860500093248
doi: 10.1080/09687860500093248
pubmed: 16096264
Houjian C, Melinda H, Fred N, Becker MJ (2007) Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae. Eukaryot Cell 6:1805–1813. https://doi.org/10.1128/EC.00257-06
doi: 10.1128/EC.00257-06
Inglis DO, Arnaud MB, Binkley J, Shah P, Skrzypek MS, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G (2012) The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res 40(D1):D667–D674. https://doi.org/10.1093/nar/gkr945
doi: 10.1093/nar/gkr945
pubmed: 22064862
Ito K, Hikida A, Kawai S, Thi V, Lan T, Motoyama T (2013) Analysing the substrate multispecificity of a proton-coupled oligopeptide transporter using a dipeptide library. Nat Commun 4(2502):1–10. https://doi.org/10.1038/ncomms3502
doi: 10.1038/ncomms3502
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
doi: 10.1093/molbev/msy096
pubmed: 29722887
pmcid: 5967553
Kumari S, Kumar M, Khandelwal NK, Pandey AK, Bhakt P, Kaur R, Prasad R, Gaur NA (2020) A homologous overexpression system to study roles of drug transporters in Candida glabrata. FEMS Yeast Res 20. https://doi.org/10.1093/femsyr/foaa032
Lamping E, Monk BC, Niimi K, Holmes AR, Tsao S, Tanabe K, Niimi M, Uehara Y, Cannon RD (2007) Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell 6:1150–1165. https://doi.org/10.1128/EC.00091-07
doi: 10.1128/EC.00091-07
pubmed: 17513564
pmcid: 1951111
Larwood DJ (2020) Nikkomycin Z—Ready to meet the promise? J Fungi 6:261. https://doi.org/10.3390/jof6040261
doi: 10.3390/jof6040261
Letunic I, Bork P (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49(W1):W293–W296. https://doi.org/10.1093/nar/gkab301
doi: 10.1093/nar/gkab301
pubmed: 33885785
pmcid: 8265157
Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP (2016) Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 64:134–140. https://doi.org/10.1093/cid/ciw691
doi: 10.1093/cid/ciw691
pubmed: 27988485
pmcid: 5215215
Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP, Cuomo CA (2018) Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 9:5346. https://doi.org/10.1038/s41467-018-07779-6
doi: 10.1038/s41467-018-07779-6
pubmed: 30559369
pmcid: 6297351
Newstead S (2015) Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim Biophys Acta 1850:488–499. https://doi.org/10.1016/j.bbagen.2014.05.011
doi: 10.1016/j.bbagen.2014.05.011
pubmed: 24859687
pmcid: 4331665
Newstead S (2017) Recent advances in understanding proton coupled peptide transport via the POT family. Curr Opin Struct Biol 45:17–24. https://doi.org/10.1016/j.sbi.2016.10.018
doi: 10.1016/j.sbi.2016.10.018
pubmed: 27865112
Omasits U, Ahrens CH, Müller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30:884–886. https://doi.org/10.1093/bioinformatics/btt607
doi: 10.1093/bioinformatics/btt607
pubmed: 24162465
Pathirana RU, Friedman J, Norris HL, Salvatori O, McCall AD, Kay J, Edgerton M (2018) Fluconazole-resistant Candida auris is susceptible to salivary histatin 5 killing and to intrinsic host defenses. Antimicrob Agents Chemother 62. https://doi.org/10.1128/AAC.01872-17
Paulsen IT, Skurray RA (1994) The POT family of transport proteins. Trends Biochem Sci 19:404. https://doi.org/10.1016/0968-0004(94)90087-6
doi: 10.1016/0968-0004(94)90087-6
pubmed: 7817396
Perry JR, Basrai MA, Steiner HY, Naider F, Becker JM (1994) Isolation and characterization of a Saccharomyces cerevisiae peptide transport gene. Mol Cell Biol 14:104–115
pubmed: 8264579
pmcid: 358361
Sanches MD, Mimura LAN, Oliveira LRC, Ishikawa LLW, Garces HG, Bagagli E, Sartori A, Kurokawa CS, Fraga-Silva TFC (2019) Differential behavior of non-albicans Candida species in the central nervous system of immunocompetent and immunosuppressed mice. Front Microbiol 9:2968. https://doi.org/10.3389/fmicb.2018.02968
doi: 10.3389/fmicb.2018.02968
pubmed: 30671026
pmcid: 6332706
Schielmann M, Szweda P, Gucwa K, Kawczyński M, Milewska MJ, Martynow D, Morschhäuser J, Milewski S (2017) Transport deficiency is the molecular basis of Candida albicans resistance to antifungal oligopeptides. Front Microbiol 8:2154. https://doi.org/10.3389/fmicb.2017.02154
doi: 10.3389/fmicb.2017.02154
pubmed: 29163437
pmcid: 5673977
Schläpfer P, Mehta D, Ridderikhoff C, Uhrig RG (2021) DomainViz: intuitive visualization of consensus domain distributions across groups of proteins. Nucleic Acids Res 49(W1):W169–W173. https://doi.org/10.1093/nar/gkab391
doi: 10.1093/nar/gkab391
pubmed: 34023887
pmcid: 8262717
Shahi G, Kumar M, Skwarecki AS, Edmondson M, Banerjee A, Usher J, Gow NAR, Milewski S, Prasad R (2022) Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor. Cell Surf 8:100076. https://doi.org/10.1016/j.tcsw.2022.100076
doi: 10.1016/j.tcsw.2022.100076
pubmed: 35252632
pmcid: 8891998
Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41(D1):D344–D347. https://doi.org/10.1093/nar/gks1067
doi: 10.1093/nar/gks1067
pubmed: 23161676
Skwarecki AS, Schielmann M, Martynow D, Kawczy M, Wi A, Milewska MJ (2018) Antifungal dipeptides incorporating an inhibitor of homoserine dehydrogenase. J Pep Sci 24(1):1–8. https://doi.org/10.1002/psc.3060
doi: 10.1002/psc.3060
Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S, Newstead S (2012) Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31:3411–3421. https://doi.org/10.1038/emboj.2012.157
doi: 10.1038/emboj.2012.157
pubmed: 22659829
pmcid: 3419923
Steiner HY, Naider F, Becker JM (1995) The PTR family: a new group of peptide transporters. Mol Microbiol 16:825–834. https://doi.org/10.1111/j.1365-2958.1995.tb02310.x
doi: 10.1111/j.1365-2958.1995.tb02310.x
pubmed: 7476181
Taei M, Chadeganipour M, Mohammadi R (2019) An alarming rise of non-albicans Candida species and uncommon yeasts in the clinical samples; a combination of various molecular techniques for identification of etiologic agents. BMC Res Notes 12:779. https://doi.org/10.1186/s13104-019-4811-1
doi: 10.1186/s13104-019-4811-1
pubmed: 31783903
pmcid: 6883655
Terada T, Saito H, Mukai M, Inui K (1997) Recognition of beta-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am J Physiol 273:F706–F711. https://doi.org/10.1152/ajprenal.1997.273.5.F706
doi: 10.1152/ajprenal.1997.273.5.F706
pubmed: 9374833
Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43(W1):W401–W407. https://doi.org/10.1093/nar/gkv485
doi: 10.1093/nar/gkv485
pubmed: 25969446
pmcid: 4489233
Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R (2019) ABC transporter genes show upregulated expression in drug-resistant clinical isolates of Candida auris: a genome-wide characterization of ATP-binding cassette (ABC) transporter genes. Front Microbiol 10:1445. https://doi.org/10.3389/fmicb.2019.01445
doi: 10.3389/fmicb.2019.01445
pubmed: 31379756
pmcid: 6647914
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. https://doi.org/10.1093/bioinformatics/btp033
doi: 10.1093/bioinformatics/btp033
pubmed: 19151095
pmcid: 2672624
Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD (2017) Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol 7:2173. https://doi.org/10.3389/fmicb.2016.02173
doi: 10.3389/fmicb.2016.02173
pubmed: 28127295
pmcid: 5226953
Yadan JC, Gonneau M, Sarthou P, Le Goffic F (1984) Sensitivity to nikkomycin Z in Candida albicans: role of peptide permeases. J Bacteriol 160:884–888
doi: 10.1128/jb.160.3.884-888.1984