Exploring the Temperature Effect on Enantioselectivity of a Baeyer-Villiger Biooxidation by the 2,5-DKCMO Module: The SLM Approach.
Shape Language Modeling
chemoenzymatic Baeyer-Villiger oxidation
kinetic resolution
temperature-dependent enantioselectivity
Journal
Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360
Informations de publication
Date de publication:
03 08 2022
03 08 2022
Historique:
received:
23
05
2022
pubmed:
2
6
2022
medline:
6
8
2022
entrez:
1
6
2022
Statut:
ppublish
Résumé
Temperature is a crucial parameter for biological and chemical processes. Its effect on enzymatically catalysed reactions has been known for decades, and stereo- and enantiopreference are often temperature-dependent. For the first time, we present the temperature effect on the Baeyer-Villiger oxidation of rac-bicyclo[3.2.0]hept-2-en-6-one by the type II Bayer-Villiger monooxygenase, 2,5-DKCMO. In the absence of a reductase and driven by the hydride-donation of a synthetic nicotinamide analogue, the clear trend for a decreasing enantioselectivity at higher temperatures was observed. "Traditional" approaches such as the determination of the enantiomeric ratio (E) appeared unsuitable due to the complexity of the system. To quantify the trend, we chose to use the 'Shape Language Modelling' (SLM), a tool that allows the reaction to be described at all points in a shape prescriptive manner. Thus, without knowing the equation of the reaction, the substrate ee can be estimated that at any conversion.
Identifiants
pubmed: 35648642
doi: 10.1002/cbic.202200293
pmc: PMC9400988
doi:
Substances chimiques
Mixed Function Oxygenases
EC 1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202200293Informations de copyright
© 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH.
Références
J Biotechnol. 2003 Apr 10;102(1):23-32
pubmed: 12668311
Biotechnol Adv. 2007 May-Jun;25(3):272-80
pubmed: 17303365
Bioresour Technol. 2012 Jul;115:196-207
pubmed: 22230779
Biochem J. 1996 Jul 1;317 ( Pt 1):1-11
pubmed: 8694749
Nat Protoc. 2008;3(3):546-54
pubmed: 18323823
Appl Environ Microbiol. 2013 May;79(10):3282-93
pubmed: 23524667
ACS Chem Biol. 2013 Nov 15;8(11):2388-93
pubmed: 24015933
Chem Commun (Camb). 2019 May 2;55(37):5306-5322
pubmed: 30998228
Microorganisms. 2019 Sep 26;7(10):
pubmed: 31561477
Biotechnol Bioeng. 2006 Aug 5;94(5):851-61
pubmed: 16523526
Biotechnol Lett. 2015 May;37(5):943-54
pubmed: 25555685
Biochem J. 1962 May;83:368-77
pubmed: 13898430
AMB Express. 2011 Jun 23;1(1):13
pubmed: 21906366
Bioresour Technol. 2012 Jul;115:48-57
pubmed: 22424920
Org Biomol Chem. 2021 Apr 26;19(15):3441-3450
pubmed: 33899864
J Gen Microbiol. 1993 Apr;139(4):797-805
pubmed: 8515237
J Bacteriol. 1986 Feb;165(2):489-97
pubmed: 3944058
FEBS J. 2021 May;288(10):3246-3260
pubmed: 33289305
Biomacromolecules. 2000 Spring;1(1):133-8
pubmed: 11709835
Biotechnol Bioeng. 2014 Jul;111(7):1273-87
pubmed: 24802032
Bioconjug Chem. 2002 Nov-Dec;13(6):1336-44
pubmed: 12440871
Biochemistry. 2013 Oct 1;52(39):6834-43
pubmed: 24004065
Curr Opin Chem Biol. 2009 Feb;13(1):43-50
pubmed: 19264533
Phytochemistry. 2015 Sep;117:144-153
pubmed: 26083454
Eur J Biochem. 1991 Dec 18;202(3):715-28
pubmed: 1765088
Enzyme Microb Technol. 2011 May 6;48(6-7):454-7
pubmed: 22113016
Angew Chem Int Ed Engl. 2005 Jul 18;44(29):4582-5
pubmed: 15973755
Arch Biochem Biophys. 2010 May;497(1-2):1-12
pubmed: 20193654
Biochim Biophys Acta. 1997 Nov 14;1343(1):130-8
pubmed: 9428667
Chembiochem. 2022 Aug 3;23(15):e202200293
pubmed: 35648642
Drug Discov Today Technol. 2013 Spring;10(1):e37-44
pubmed: 24050228
Curr Opin Chem Biol. 2011 Apr;15(2):187-93
pubmed: 21195018
Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5737-42
pubmed: 15073326
Biotechnol Adv. 2021 Nov 1;51:107712
pubmed: 33588053
Bioresour Technol. 2013 Jun;137:9-17
pubmed: 23584405
Nature. 2001 Jan 11;409(6817):258-68
pubmed: 11196655