Cell wall stabilization and calcium absorption on mango fruit treated with a quarantine hot water treatment combined with calcium salts and stored at chilling temperature.


Journal

Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045

Informations de publication

Date de publication:
10 2022
Historique:
revised: 06 04 2022
received: 27 01 2022
accepted: 03 05 2022
pubmed: 3 6 2022
medline: 13 10 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

Hot water treatment (HT) induces chilling injury (CI) tolerance in mango, but prolonged exposure to HT causes softening. In this sense, calcium salts stabilize the cell wall. Nevertheless, there is little information on the effect of HT combined with calcium salts (HT-Ca) on calcium absorption and cell wall stability during storage of mango at CI temperature. We evaluated the effect of quarantine HT in combination with calcium chloride (CaCl

Identifiants

pubmed: 35652286
doi: 10.1111/jfbc.14266
doi:

Substances chimiques

Salts 0
Calcium Chloride M4I0D6VV5M
Calcium Citrate MLM29U2X85
Calcium SY7Q814VUP

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14266

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Aguayo, E., Escalona, V., & Artés, F. (2008). Effect of hot water treatment and various calcium salts on quality of fresh-cut “Amarillo” melon. Postharvest Biology and Technology, 47, 397-406. https://doi.org/10.1016/j.postharvbio.2007.08.001
Anthon, G. E., Blot, L., & Barrett, D. M. (2005). Improved firmness in calcified diced tomatoes by temperature activation of pectinmethylesterase. Journal of Food Science, 70, 342-347. https://doi.org/10.1111/j.1365-2621.2005.tb09964.x
Ayón-Reyna, L. E., López-Valenzuela, J. A., Delgado-Vargas, F., López-López, M. E., Molina-Corral, F. J., Carrillo-López, A., & Vega-García, M. O. (2017). Effect of the combination hot water - calcium chloride on the in vitro growth of Colletotrichum gloeosporioides and the postharvest quality of infected papaya. Plant Pathology Journal, 33, 572-581. https://doi.org/10.5423/PPJ.OA.01.2017.0004
Bagheri, M., Esna-Ashari, M., & Ershadi, A. (2015). Effect of postharvest calcium chloride treatment on the storage life and quality of persimmon fruits (Diospyros kaki Thunb.) cv. Karaj. International Journal of Horticultural Science, 2, 15-26. https://doi.org/10.22059/IJHST.2015.54260
Beirão-da-Costa, S., Cardoso, A., Louro, L., Empis, J., & Moldao-Martins, M. (2008). The effect of calcium dips combined with mild heating of whole kiwi fruit for fruit slices quality maintenance. Food Chemistry, 108, 191-197. https://doi.org/10.1016/j.foodchem.2007.10.075
Chuni, S. H., Awang, Y., & Mohamed, M. T. (2010). Cell wall enzymes activities and quality of calcium treated fresh-cut red flesh dragon fruit (Hylocereuas polyrhizus). International Journal of Agriculture and Biology, 2, 713-718 10-106/MUH/2010/12-5-713-718.
Demidchik, V. (2014). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109, 212-228. https://doi.org/10.1016/j.envexpbot.2014.06.021
Díaz-Corona, D. A., López-López, M. E., Ayón-Reyna, L. E., López-Velázquez, J. G., López-Zazueta, B. A., & Vega-García, M. O. (2020). Impact of hot water-calcium on the activity of cell wall degrading and antioxidant system enzymes in mango stored at chilling temperature. Journal of Food Biochemistry, 44, 1-11. https://doi.org/10.1111/jfbc.13286
FAOSTAT. (2021). Food and Agriculture Organization of the United Nations Statistical Database. Retrieved from http://www.fao.org/faostat/es/#data/QC
García-Serrano, P., Romero, C., García-García, P., & Brenes, M. (2020). Influence of the type of calcium salt on the cation absorption and firmness of black ripe olives. International Journal of Food Science and Technology, 56, 919-926. https://doi.org/10.1111/ijfs.14739
Hemmaty, S., Moallemi, N., & Naseri, L. (2007). Effect of UV-C radiation and hot water on the calcium content and postharvest quality of apples. Spanish Journal of Agricultural Research, 5, 59-68. https://doi.org/10.5424/sjar/2007054-277
Hewajulige, I. G. N., Wilson-Wijeratnam, R. S., Wijesundera, R. L. C., & Abeysekere, M. (2003). Fruit calcium concentration and chilling injury during low temperature storage of pineapple. Journal of the Science of Food and Agriculture, 83, 1451-1454. https://doi.org/10.1002/jsfa.1556
Hodges, D. M. (2004). Oxidative stress: Importance for postharvest quality. HortScience, 39, 924-929. https://doi.org/10.21273/HORTSCI.39.5.924
Hou, Y., Li, Z., Zheng, Y., & Jin, P. (2021). Effects of CaCl2 treatment alleviates chilling injury of loquat fruit (Eribotrya japonica) by modulating ROS homeostasis. Food, 10, 1662. https://doi.org/10.3390/foods10071662
Jin, P., Zheng, Y., Tanga, S., Ruia, H., & Wang, C. H. (2009). A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biology and Technology, 52, 24-29. https://doi.org/10.1016/j.postharvbio.2008.09.011
Kittermann, D., Neuwald, D., & Streif, J. (2010). Influence of calcium on fruit firmness and cell wall degrading enzyme activity in “Elstar” apples during storage. Acta Horticulturae, 877, 1037-1043. https://doi.org/10.17660/ActaHortic.2010.877.140
López-López, M. E., López-Valenzuela, J. A., Delgado-Vargas, F., López-Angulo, G., Carrillo-López, A., Ayón-Reyna, L. E., & Vega-García, M. O. (2018). A treatment combining hot water with calcium lactate improves the chilling injury tolerance of mango fruit. HortScience, 53, 217-223. https://doi.org/10.21273/HORTSCI12575-17
López-Velázquez, J. G., Delgado-Vargas, F., López-Ángulo, G., García-Armenta, E., López-López, M. E., Ayón-Reyna, L. E., Díaz-Corona, D. A., & Vega-García, M. O. (2020). Phenolic profile associated with chilling tolerance induced by the application of a hot water treatment in bell pepper fruit. Journal of Food Science, 85, 2080-2089. https://doi.org/10.1111/1750-3841.15310
Lovera, N., Ramallo, L., & Salvadori, V. (2014). Effect of processing conditions on calcium content, firmness, and color of papaya in syrup. Journal of Food Processing, 2014, 1-6. https://doi.org/10.1155/2014/603639
McFeeters, R. F., & Fleming, H. P. (1991). PH effect on calcium inhibition of softening of cucumber mesocarp tissue. Journal of Food Science, 56, 730-733. https://doi.org/10.1111/j.1365-2621.1991.tb05368.x
Mirdehghan, S. H., & Ghotbi, F. (2014). Effects of salicylic acid, jasmonic acid, and calcium chloride on reducing chilling injury of pomegranate (Punica granatum L.) fruit. Journal of Agricultural Science and Technology, 16, 163-173 http://jast.modares.ac.ir/article-23-4937-en.html
Muengkaew, R., Whangchai, K., & Chaiprasart, P. (2018). Application of calcium-boron improve fruit quality, cell characteristics, and effective softening enzyme activity after harvest in mango fruit (Mangifera indica L.). Horticulture, Environment, and Biotechnology, 59, 537-546. https://doi.org/10.1007/s13580-018-0059-2
Ngamchuachit, P., Sivertsen, H., Mitcham, E. J., & Barrett, D. M. (2014). Effectiveness of calcium chloride and calcium lactate on maintenance of textural and sensory qualities of fresh-cut mangos. Journal of Food Science, 79, 786-794. https://doi.org/10.1111/1750-3841.12446
Nyanjage, M. O., Wainwright, H., & Bishop, C. F. H. (1999). Effects of hot-water treatment and storage temperature on electrolyte leakage of mangoes (Mangifera indica Linn.). The Journal of Horticultural Science and Biotechnology, 74, 566-572. https://doi.org/10.1080/14620316.1999.11511154
Paniagua, C., Blanco-Portales, R., Barceló-Muñoz, M., García-Gago, J. A., Waldron, K., Quesada, M. A., Muñoz-Blanco, J., & Mercado, J. A. (2015). Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening. Journal of Experimental Botany, 67, 619-631. https://doi.org/10.1093/jxb/erv462
Phothiset, S., & Charoenrein, S. (2013). Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues. Journal of the Science of Food and Agriculture, 94, 189-196. https://doi.org/10.1002/jsfa.6226
Ranjbar, S., Rahemi, M., & Ramezanian, A. (2018). Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. Red Delicious. Scientia Horticulturae, 240, 57-64. https://doi.org/10.1016/j.scienta.2018.05.035
Salazar-Salas, N. Y., Chairez-Vega, D. A., Vega-Álvarez, M., González-Núñez, D. G., Pineda-Hidalgo, K. V., Chávez-Ontiveros, J., Delgado-Vargas, F., & López-Valenzuela, J. A. (2022). Proteomic changes in mango fruit peel associated with chilling tolerance induced by quarantine hot water treatment. Postharvest Biology and Technology, 186, 838-844. https://doi.org/10.1016/j.postharvbio.2022.111838
Salazar-Salas, N. Y., Valenzuela-Ponce, L., Vega-García, O. M., Pineda-Hidalgo, K. V., Vega-Álvarez, M., Chávez-Ontiveros, J., Delgado-Vargas, F., & López-Valenzuela, J. A. (2017). Protein changes associated with chilling tolerance in tomato fruit with hot water pre-treatment. Postharvest Biology and Technology, 134, 22-30. https://doi.org/10.1016/j.postharvbio.2017.08.002
Shafiee, M., Taghavi, T. S., & Babalar, M. (2010). Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Scientia Horticulturae, 124, 40-45. https://doi.org/10.1016/j.scienta.2009.12.004
Shahkoomahally, S., & Ramezanian, A. (2015). Hot water combined with calcium treatment improves physical and physicochemical attributes of kiwifruit (Actinidia deliciosa cv. Hayward) during storage. Horticultural Science, 50, 412-415. https://doi.org/10.21273/HORTSCI.50.3.412
Silveira-Gómez, A. C., Chisari, M., Aguayo-Giménez, E. P., & Artes-Calero, F. (2011). Some calcium salts reduce polygalacturonase activity and softening in Galia melon minimally processed in fresh. Postharvest Biology and Technology, 62, 77-84. https://doi.org/10.1016/j.postharvbio.2011.04.009
USDA-APHIS. (2014). Treatment schedules. United States Department of Agriculture. Retrieved from https://www.aphis.usda.gov/aphis/ourfocus/planthealth/importinformation/sa_quarantine_treatments/ct_quarantine-treatment
Vega-Álvarez, M., Salazar-Salas, N. Y., López-Angulo, G., Pineda-Hidalgo, K. V., López-López, M. E., Vega-García, M. O., Delgado-Vargas, F., & López-Valenzuela, J. A. (2020). Metabolomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment. Postharvest Biology and Technology, 169, 1-10. https://doi.org/10.1016/j.postharvbio.2020.111299
Zhang, Z., Gao, Z., & Li, M. (2012). Hot water treatment maintains normal ripening and cell wall metabolism in mango (Mangifera indica L.) fruit. Horticultural Science, 47, 1466-1471. https://doi.org/10.21273/HORTSCI.47.10.1466

Auteurs

Jordi G López-Velázquez (JG)

Doctorado Regional en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.

Martha E López-López (ME)

Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.

Andrés Rubio-Trías (A)

Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.

Lidia E Ayón-Reyna (LE)

Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.

Denisse A Díaz-Corona (DA)

Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.

Guadalupe I Olivas Orozco (GI)

Centro de Investigación en Alimentación y Desarrollo, A.C., Cd. Cuauhtémoc, Chihuahua, Mexico.

Javier Molina-Corral (J)

Centro de Investigación en Alimentación y Desarrollo, A.C., Cd. Cuauhtémoc, Chihuahua, Mexico.

Misael O Vega-García (MO)

Doctorado Regional en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.
Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.

Articles similaires

Psoriasis Humans Magnesium Zinc Trace Elements

Perceptions of the neighbourhood food environment and food insecurity of families with children during the Covid-19 pandemic.

Irene Carolina Sousa Justiniano, Matheus Santos Cordeiro, Hillary Nascimento Coletro et al.
1.00
Humans COVID-19 Food Insecurity Cross-Sectional Studies Female
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction

Classifications MeSH