Molecularly Precise, Bright, Photostable, and Biocompatible Cyanine Nanodots as Alternatives to Quantum Dots for Biomedical Applications.
Cyanine Dyes
Dendrimers
Fluorescent Imaging
Single-Molecule Nanoparticles
Tumor Imaging
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
05 09 2022
05 09 2022
Historique:
received:
08
02
2022
pubmed:
3
6
2022
medline:
1
9
2022
entrez:
2
6
2022
Statut:
ppublish
Résumé
Fluorescent imaging with fluorophores has become a powerful way to explore complex biological systems and visualize nanoparticles for drug delivery. However, it is challenging to develop fluorophores with ideal physical and optical properties. We report a method to synthesize cyanine nanodots with a single-molecule structure, well-defined particle size, customizable fluorescent spectrum, and bright and stable fluorescence. These cyanine nanodots are acquired by the divergent synthesis of cyanine-dye-cored polylysine (PLL) dendrimers. We demonstrated the feasibility of the method by synthesizing cyanine 3 (Cy3), cyanine 5 (Cy5), or cyanine 7 (Cy7) cored single-molecule nanodots up to eight generations with a size of around 11 nm. We show that these cyanine nanodots are capable of multiple biomedical applications, including multicolor cellular tracing and cancer imaging. These cyanine nanodots possess many merits of organic dots and quantum dots that are promising for future application.
Identifiants
pubmed: 35652391
doi: 10.1002/anie.202202128
doi:
Substances chimiques
Fluorescent Dyes
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202202128Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
Y. Y. Jiang, K. Y. Pu, Chem. Rev. 2021, 121, 13086-13131;
J. B. Li, H. W. Liu, W. H. Tan, Trends Chem. 2019, 1, 224-234;
R. R. Zhang, A. B. Schroeder, J. J. Grudzinski, E. L. Rosenthal, J. M. Warram, A. N. Pinchuk, K. W. Eliceiri, J. S. Kuo, J. P. Weichert, Nat. Rev. Clin. Oncol. 2017, 14, 347-364.
Y. Zhang, S. S. He, W. Chen, Y. H. Liu, X. F. Zhang, Q. Q. Miao, K. Y. Pu, Angew. Chem. Int. Ed. 2021, 60, 5921-5927;
Angew. Chem. 2021, 133, 5986-5992;
C. Chen, H. L. Ou, R. H. Liu, D. Ding, Adv. Mater. 2020, 32, 1806331;
H. Cong, K. Wang, Z. Zhou, J. Yang, Y. Piao, B. Yu, Y. Shen, Z. Zhou, ACS Nano 2020, 14, 5887-5900.
Z. Q. Guo, G. H. Kim, I. Shin, J. Yoon, Biomaterials 2012, 33, 7818-7827;
G. S. Hong, A. L. Antaris, H. J. Dai, Nat. Biomed. Eng. 2017, 1, 0010;
J. G. Huang, K. Y. Pu, Angew. Chem. Int. Ed. 2020, 59, 11717-11731;
Angew. Chem. 2020, 132, 11813-11827.
U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods 2008, 5, 763-775.
S. Zhu, Z. Hu, R. Tian, B. C. Yung, Q. Yang, S. Zhao, D. O. Kiesewetter, G. Niu, H. Sun, A. L. Antaris, X. Chen, Adv. Mater. 2018, 30, 1802546;
C. Sun, W. Du, B. Wang, B. Dong, B. Wang, BMC Chem. Biol. 2020, 14, 21.
J. A. Carr, D. Franke, J. R. Caram, C. F. Perkinson, M. Saif, V. Askoxylakis, M. Datta, D. Fukumura, R. K. Jain, M. G. Bawendi, O. T. Bruns, Proc. Natl. Acad. Sci. USA 2018, 115, 4465-4470.
A. Sharma, D. K. Mohanty, A. Desai, R. Ali, Electrophoresis 2003, 24, 2733-2739.
M. Levitus, S. Ranjit, Q. Rev. Biophys. 2011, 44, 123-151.
C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Nat. Protoc. 2013, 8, 1535-1550;
R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, Bioconjugate Chem. 1993, 4, 105-111.
C. D. Ji, Y. Zheng, J. Li, J. Shen, W. T. Yang, M. Z. Yin, J. Mater. Chem. B 2015, 3, 7494-7498.
H. S. Muddana, T. T. Morgan, J. H. Adair, P. J. Butle, Nano Lett. 2009, 9, 1559-1566.
J. B. Grimm, A. K. Muthusamy, Y. Liang, T. A. Brown, W. C. Lemon, R. Patel, R. Lu, J. J. Macklin, P. J. Keller, N. Ji, L. D. Lavis, Nat. Methods 2017, 14, 987-994.
R. B. Altman, D. S. Terry, Z. Zhou, Q. S. Zheng, Nat. Methods 2012, 9, 68-73.
M. Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110, 2641-2684;
L. Jiao, Y. Z. Liu, X. Y. Zhang, G. B. Hong, J. Zheng, J. N. Cui, X. J. Peng, F. L. Song, ACS Cent. Sci. 2020, 6, 747-759.
M. Grzybowski, M. Taki, K. Senda, Y. Sato, T. Ariyoshi, Y. Okada, R. Kawakami, T. Imamura, S. Yamaguchi, Angew. Chem. Int. Ed. 2018, 57, 10137-10141;
Angew. Chem. 2018, 130, 10294-10298;
S. K. Yang, X. H. Shi, S. Park, T. Ha, S. C. Zimmerman, Nat. Chem. 2013, 5, 692-697.
R. R. Nani, J. A. Kelley, J. Ivanic, M. J. Schnermann, Chem. Sci. 2015, 6, 6556-6563.
R. B. Altman, Q. S. Zheng, Z. Zhou, D. S. Terry, J. D. Warren, S. C. Blanchard, Nat. Methods 2012, 9, 428-429.
N. I. Shank, H. H. Pham, A. S. Waggoner, B. A. Armitage, J. Am. Chem. Soc. 2013, 135, 242-251.
R. Tian, Q. Zeng, S. Zhu, J. Lau, S. Chandra, R. Ertsey, K. S. Hettie, T. Teraphongphom, Z. Hu, G. Niu, D. O. Kiesewetter, H. Sun, X. Zhang, A. L. Antaris, B. R. Brooks, X. Chen, Sci. Adv. 2019, 5, eaaw0672.
M. V. Yezhelyev, A. Al-Hajj, C. Morris, A. I. Marcus, T. Liu, M. Lewis, C. Cohen, P. Zrazhevskiy, J. W. Simons, A. Rogatko, S. Nie, X. Gao, R. M. O'Regan, Adv. Mater. 2007, 19, 3146-3151.
N. Hoshyar, S. Gray, H. B. Han, G. Bao, Nanomedicine 2016, 11, 673-692;
J. Bugno, H. J. Hsu, R. M. Pearson, H. Noh, S. Hong, Mol. Pharm. 2016, 13, 2155-2163.
C. A. Dougherty, S. Vaidyanathan, B. G. Orr, M. M. Banaszak Holl, Bioconjugate Chem. 2015, 26, 304-315.
A. M. Mahmoud, J. P. Morrow, D. Pizzi, A. M. Azizah, T. P. Davis, R. F. Tabor, K. Kempe, Biomacromolecules 2020, 21, 3007-3016.