Molecularly Precise, Bright, Photostable, and Biocompatible Cyanine Nanodots as Alternatives to Quantum Dots for Biomedical Applications.

Cyanine Dyes Dendrimers Fluorescent Imaging Single-Molecule Nanoparticles Tumor Imaging

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
05 09 2022
Historique:
received: 08 02 2022
pubmed: 3 6 2022
medline: 1 9 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

Fluorescent imaging with fluorophores has become a powerful way to explore complex biological systems and visualize nanoparticles for drug delivery. However, it is challenging to develop fluorophores with ideal physical and optical properties. We report a method to synthesize cyanine nanodots with a single-molecule structure, well-defined particle size, customizable fluorescent spectrum, and bright and stable fluorescence. These cyanine nanodots are acquired by the divergent synthesis of cyanine-dye-cored polylysine (PLL) dendrimers. We demonstrated the feasibility of the method by synthesizing cyanine 3 (Cy3), cyanine 5 (Cy5), or cyanine 7 (Cy7) cored single-molecule nanodots up to eight generations with a size of around 11 nm. We show that these cyanine nanodots are capable of multiple biomedical applications, including multicolor cellular tracing and cancer imaging. These cyanine nanodots possess many merits of organic dots and quantum dots that are promising for future application.

Identifiants

pubmed: 35652391
doi: 10.1002/anie.202202128
doi:

Substances chimiques

Fluorescent Dyes 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202202128

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

 
Y. Y. Jiang, K. Y. Pu, Chem. Rev. 2021, 121, 13086-13131;
J. B. Li, H. W. Liu, W. H. Tan, Trends Chem. 2019, 1, 224-234;
R. R. Zhang, A. B. Schroeder, J. J. Grudzinski, E. L. Rosenthal, J. M. Warram, A. N. Pinchuk, K. W. Eliceiri, J. S. Kuo, J. P. Weichert, Nat. Rev. Clin. Oncol. 2017, 14, 347-364.
 
Y. Zhang, S. S. He, W. Chen, Y. H. Liu, X. F. Zhang, Q. Q. Miao, K. Y. Pu, Angew. Chem. Int. Ed. 2021, 60, 5921-5927;
Angew. Chem. 2021, 133, 5986-5992;
C. Chen, H. L. Ou, R. H. Liu, D. Ding, Adv. Mater. 2020, 32, 1806331;
H. Cong, K. Wang, Z. Zhou, J. Yang, Y. Piao, B. Yu, Y. Shen, Z. Zhou, ACS Nano 2020, 14, 5887-5900.
 
Z. Q. Guo, G. H. Kim, I. Shin, J. Yoon, Biomaterials 2012, 33, 7818-7827;
G. S. Hong, A. L. Antaris, H. J. Dai, Nat. Biomed. Eng. 2017, 1, 0010;
J. G. Huang, K. Y. Pu, Angew. Chem. Int. Ed. 2020, 59, 11717-11731;
Angew. Chem. 2020, 132, 11813-11827.
U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods 2008, 5, 763-775.
 
S. Zhu, Z. Hu, R. Tian, B. C. Yung, Q. Yang, S. Zhao, D. O. Kiesewetter, G. Niu, H. Sun, A. L. Antaris, X. Chen, Adv. Mater. 2018, 30, 1802546;
C. Sun, W. Du, B. Wang, B. Dong, B. Wang, BMC Chem. Biol. 2020, 14, 21.
J. A. Carr, D. Franke, J. R. Caram, C. F. Perkinson, M. Saif, V. Askoxylakis, M. Datta, D. Fukumura, R. K. Jain, M. G. Bawendi, O. T. Bruns, Proc. Natl. Acad. Sci. USA 2018, 115, 4465-4470.
A. Sharma, D. K. Mohanty, A. Desai, R. Ali, Electrophoresis 2003, 24, 2733-2739.
M. Levitus, S. Ranjit, Q. Rev. Biophys. 2011, 44, 123-151.
 
C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Nat. Protoc. 2013, 8, 1535-1550;
R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, Bioconjugate Chem. 1993, 4, 105-111.
C. D. Ji, Y. Zheng, J. Li, J. Shen, W. T. Yang, M. Z. Yin, J. Mater. Chem. B 2015, 3, 7494-7498.
H. S. Muddana, T. T. Morgan, J. H. Adair, P. J. Butle, Nano Lett. 2009, 9, 1559-1566.
J. B. Grimm, A. K. Muthusamy, Y. Liang, T. A. Brown, W. C. Lemon, R. Patel, R. Lu, J. J. Macklin, P. J. Keller, N. Ji, L. D. Lavis, Nat. Methods 2017, 14, 987-994.
R. B. Altman, D. S. Terry, Z. Zhou, Q. S. Zheng, Nat. Methods 2012, 9, 68-73.
 
M. Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110, 2641-2684;
L. Jiao, Y. Z. Liu, X. Y. Zhang, G. B. Hong, J. Zheng, J. N. Cui, X. J. Peng, F. L. Song, ACS Cent. Sci. 2020, 6, 747-759.
 
M. Grzybowski, M. Taki, K. Senda, Y. Sato, T. Ariyoshi, Y. Okada, R. Kawakami, T. Imamura, S. Yamaguchi, Angew. Chem. Int. Ed. 2018, 57, 10137-10141;
Angew. Chem. 2018, 130, 10294-10298;
S. K. Yang, X. H. Shi, S. Park, T. Ha, S. C. Zimmerman, Nat. Chem. 2013, 5, 692-697.
R. R. Nani, J. A. Kelley, J. Ivanic, M. J. Schnermann, Chem. Sci. 2015, 6, 6556-6563.
R. B. Altman, Q. S. Zheng, Z. Zhou, D. S. Terry, J. D. Warren, S. C. Blanchard, Nat. Methods 2012, 9, 428-429.
N. I. Shank, H. H. Pham, A. S. Waggoner, B. A. Armitage, J. Am. Chem. Soc. 2013, 135, 242-251.
R. Tian, Q. Zeng, S. Zhu, J. Lau, S. Chandra, R. Ertsey, K. S. Hettie, T. Teraphongphom, Z. Hu, G. Niu, D. O. Kiesewetter, H. Sun, X. Zhang, A. L. Antaris, B. R. Brooks, X. Chen, Sci. Adv. 2019, 5, eaaw0672.
M. V. Yezhelyev, A. Al-Hajj, C. Morris, A. I. Marcus, T. Liu, M. Lewis, C. Cohen, P. Zrazhevskiy, J. W. Simons, A. Rogatko, S. Nie, X. Gao, R. M. O'Regan, Adv. Mater. 2007, 19, 3146-3151.
 
N. Hoshyar, S. Gray, H. B. Han, G. Bao, Nanomedicine 2016, 11, 673-692;
J. Bugno, H. J. Hsu, R. M. Pearson, H. Noh, S. Hong, Mol. Pharm. 2016, 13, 2155-2163.
C. A. Dougherty, S. Vaidyanathan, B. G. Orr, M. M. Banaszak Holl, Bioconjugate Chem. 2015, 26, 304-315.
A. M. Mahmoud, J. P. Morrow, D. Pizzi, A. M. Azizah, T. P. Davis, R. F. Tabor, K. Kempe, Biomacromolecules 2020, 21, 3007-3016.

Auteurs

Jiajia Yang (J)

Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Kaiqi Wang (K)

Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Yihuan Zheng (Y)

Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Ying Piao (Y)

Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Jinqiang Wang (J)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Jianbin Tang (J)

Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Youqing Shen (Y)

Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Zhuxian Zhou (Z)

Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Articles similaires

Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis
Neoplastic Stem Cells Animals Humans Aldehyde Dehydrogenase Tretinoin
NLR Family, Pyrin Domain-Containing 3 Protein Autophagy Inflammasomes Interleukin-1beta Animals

Classifications MeSH