Exploration of Isoxazole-Carboxylic Acid Methyl Ester Based 2-Substituted Quinoline Derivatives as Promising Antitubercular Agents.


Journal

Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449

Informations de publication

Date de publication:
Jul 2022
Historique:
received: 07 04 2022
accepted: 02 06 2022
pubmed: 3 6 2022
medline: 28 7 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

In pursuit of potent anti-TB agents active against drug resistant tuberculosis (DR-TB), herein we report synthesis and bio-evaluation of a new series of isoxazole-carboxylic acid methyl ester based 2-substituted quinoline derivatives. Preliminary evaluation indicated selectivity towards Mtb H37Rv, with no inhibition of non-tubercular mycobacterial (NTM) & bacterial pathogen panel. Out of 36 synthesized compounds, majority exhibited substantial inhibition of Mtb H37Rv (MIC 0.5-8 μg/mL). Cell viability test against Vero cells revealed no significant cytotoxicity. Further, screening against drug resistant strains (DR-Mtb) found hit compound displaying promising potency (MIC 1-4 μg/mL). Structure optimization of the hit led to the identification of lead compound demonstrating potent inhibition of both drug-susceptible Mtb (MIC 0.12 μg/mL) and drug-resistant Mtb (MIC 0.25-0.5 μg/mL) along with a high selectivity index (SI) >80. Taken together, with appreciable selectivity and potent activity, these chemotypes show prospect to be turned into a potential anti-TB candidate.

Identifiants

pubmed: 35653161
doi: 10.1002/cbdv.202200324
doi:

Substances chimiques

Antitubercular Agents 0
Carboxylic Acids 0
Dermatologic Agents 0
Esters 0
Isoxazoles 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202200324

Subventions

Organisme : Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India
Organisme : Council of Scientific and Industrial Research (CSIR)
ID : NIPERHYD/2022/60

Informations de copyright

© 2022 Wiley-VHCA AG, Zurich, Switzerland.

Références

Global tuberculosis report, WHO, Geneva, 2021. https://www.who.int/publications/i/item/9789240037021
G. M. Knight, M. C. Raviglione, R. G. White, ‘No antimicrobial resistance research agenda without tuberculosis’, The Lancet Global Health 2020, 8, e987-e988.
Antimicrobial Resistance, TB alliance, 2022. https://www.tballiance.org/why-new-tb-drugs/antimicrobial-resistance
F. Stephanie, M. Saragih, U. S. F. Tambunan, ‘Recent Progress and Challenges for Drug-Resistant Tuberculosis Treatment’, Pharmaceutica 2021, 13, 592.
H. W. Al-Humadi, R. J. Al-Saigh, A. W. Al-Humadi, ‘Addressing the Challenges of Tuberculosis: A Brief Historical Account’, Front. Pharmacol. 2017, 8, 689.
S. Kiazyk, T. B. Ball, ‘Latent tuberculosis infection: An overview’, Can. commun. dis. rep. 2017, 43, 62-66.
Global New TB Drug Pipeline, Working Group On New TB Drugs, 2022. https://www.newtbdrugs.org/pipeline/clinical
A. Koul, E. Arnoult, N. Lounis, J. Guillemont, K. Andries, ‘The challenge of new drug discovery for tuberculosis’, Nature 2011, 469, 483-490.
Q. An, C. Li, Y. Chen, Y. Deng, T. Yang, Y. Luo, ‘Repurposed drug candidates for antituberculosis therapy’, Eur. J. Med. Chem. 2020, 192, 112175.
A. Lilienkampf, M. Pieroni, B. Wan, Y. Wang, S. G. Franzblau, A. P. Kozikowski, ‘Rational Design of 5-Phenyl-3-isoxazolecarboxylic Acid Ethyl Esters as Growth Inhibitors of Mycobacterium tuberculosis. A Potent and Selective Series for Further Drug Development’, J. Med. Chem. 2010, 53, 678-688.
K. Nepali, H.-Y. Lee, J.-P. Liou, ‘Nitro-Group-Containing Drugs’, J. Med. Chem. 2019, 62, 2851-2893.
C. F. Vickers, A. P. G. Silva, A. Chakraborty, P. Fernandez, N. Kurepina, C. Saville, Y. Naranjo, M. Pons, L. S. Schnettger, M. G. Gutierrez, S. Park, B. N. Kreiswith, D. S. Perlin, E. J. Thomas, J. S. Cavet, L. Tabernero, ‘Structure-Based Design of MptpB Inhibitors That Reduce Multidrug-Resistant Mycobacterium tuberculosis Survival and Infection Burden in Vivo’, J. Med. Chem. 2018, 61, 8337-8352.
E. Azzali, D. Machado, A. Kaushik, F. Vacondio, S. Flisi, C. S. Cabassi, G. Lamichhane, M. Viveiros, G. Costantino, M. Pieroni, ‘Substituted N-Phenyl-5-(2-(phenylamino)thiazol-4-yl)isoxazole-3-carboxamides Are Valuable Antitubercular Candidates that Evade Innate Efflux Machinery’, J. Med. Chem. 2017, 60, 7108-7122.
Q. Huang, J. Mao, B. Wan, Y. Wang, R. Brun, S. G. Franzblau, A. P. Kozikowski, ‘Searching for new cures for tuberculosis: design, synthesis, and biological evaluation of 2-methylbenzothiazoles’, J. Med. Chem. 2009, 52, 6757-6767.
S. K. Sahoo, B. Rani, N. B. Gaikwad, M. N. Ahmad, G. Kaul, M. Shukla, S. Nanduri, A. Dasgupta, S. Chopra, V. M. Yaddanapudi, ‘Synthesis and structure-activity relationship of new chalcone linked 5-phenyl-3-isoxazolecarboxylic acid methyl esters potentially active against drug resistant Mycobacterium tuberculosis’, Eur. J. Med. Chem. 2021, 222, 113580.
A. Lilienkampf, M. Pieroni, S. G. Franzblau, W. R. Bishai, A. P. Kozikowski, ‘Derivatives of 3-isoxazolecarboxylic acid esters: a potent and selective compound class against replicating and nonreplicating Mycobacterium tuberculosis’, Curr. Top. Med. Chem. 2012, 12, 729-734.
J. Guillemont, C. Meyer, A. Poncelet, X. Bourdrez, K. Andries, ‘Diarylquinolines, synthesis pathways and quantitative structure-activity relationship studies leading to the discovery of TMC207’, Future Med. Chem. 2011, 3, 1345-1360.
R. S. Keri, S. A. Patil, ‘Quinoline: a promising antitubercular target’, Biomed. Pharmacother. 2014, 68, 1161-1175.
E. Pitta, M. K. Rogacki, O. Balabon, S. Huss, F. Cunningham, E. M. Lopez-Roman, J. Joossens, K. Augustyns, L. Ballell, R. H. Bates, P. Van der Veken, ‘Searching for New Leads for Tuberculosis: Design, Synthesis, and Biological Evaluation of Novel 2-Quinolin-4-yloxyacetamides’, J. Med. Chem. 2016, 59, 6709-6728.
B. Medapi, J. Renuka, S. Saxena, J. P. Sridevi, R. Medishetti, P. Kulkarni, P. Yogeeswari, D. Sriram, ‘Design and synthesis of novel quinoline-aminopiperidine hybrid analogs as Mycobacterium tuberculosis DNA gyraseB inhibitors’, Bioorg. Med. Chem. 2015, 23, 2062-2078.
T. G. Shruthi, S. Eswaran, P. Shivarudraiah, S. Narayanan, S. Subramanian, ‘Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety’, Bioorg. Med. Chem. Lett. 2019, 29, 97-102.
S. R. Patel, R. Gangwal, A. T. Sangamwar, R. Jain, ‘Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents’, Eur. J. Med. Chem. 2014, 85, 255-267.
K. D. Thomas, A. V. Adhikari, I. H. Chowdhury, T. Sandeep, R. Mahmood, B. Bhattacharya, E. Sumesh, ‘Design, synthesis and docking studies of quinoline-oxazolidinone hybrid molecules and their antitubercular properties’, Eur. J. Med. Chem. 2011, 46, 4834-4845.
S. Eswaran, A. V. Adhikari, I. H. Chowdhury, N. K. Pal, K. D. Thomas, ‘New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties’, Eur. J. Med. Chem. 2010, 45, 3374-3383.
K. D. Thomas, A. V. Adhikari, I. H. Chowdhury, E. Sumesh, N. K. Pal, ‘New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents’, Eur. J. Med. Chem. 2011, 46, 2503-2512.
A. Lilienkampf, J. Mao, B. Wan, Y. Wang, S. G. Franzblau, A. P. Kozikowski, ‘Structure-Activity Relationships for a Series of Quinoline-Based Compounds Active against Replicating and Nonreplicating Mycobacterium tuberculosis’, J. Med. Chem. 2009, 52, 2109-2118.
M. Pieroni, A. Lilienkampf, B. Wan, Y. Wang, S. G. Franzblau, A. P. Kozikowski, ‘Synthesis, Biological Evaluation, and Structure-Activity Relationships for 5-[(E)-2-Arylethenyl]-3-isoxazolecarboxylic Acid Alkyl Ester Derivatives as Valuable Antitubercular Chemotypes’, J. Med. Chem. 2009, 52, 6287-6296.
J. Mao, H. Yuan, Y. Wang, B. Wan, M. Pieroni, Q. Huang, R. B. van Breemen, A. P. Kozikowski, S. G. Franzblau, ‘From serendipity to rational antituberculosis drug discovery of mefloquine-isoxazole carboxylic acid esters’, J. Med. Chem. 2009, 52, 6966-6978.
S. H. Abbas, A. A. Abd El-Hafeez, M. E. Shoman, M. M. Montano, H. A. Hassan, ‘New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3 K inhibitory activity’, Bioorg. Chem. 2019, 82, 360-377.
T. S. Kaoud, A. M. Mohassab, H. A. Hassan, C. Yan, S. X. Van Ravenstein, D. Abdelhamid, K. N. Dalby, M. Abdel-Aziz, ‘NO-releasing STAT3 inhibitors suppress BRAF-mutant melanoma growth’, Eur. J. Med. Chem. 2020, 186, 111885.
M. G. A. Shvekhgeimer, ‘The Pfitzinger Reaction. (Review)’, Chem. Heterocycl. Compd. 2004, 40, 257-294.
R. S. Belen′kaya, E. I. Boreko, M. N. Zemtsova, M. I. Kalinina, M. M. Timofeeva, P. L. Trakhtenberg, V. M. Chelnov, A. E. Lipkin, V. I. Votyakov, ‘Synthesis and antiviral activity of 2-[aryl(hetaryl)]quinoline-4-carboxylic acids’, Pharm. Chem. J. 1981, 15, 171-176.
D. Machado, M. Girardini, M. Viveiros, M. Pieroni, ‘Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis’, Front. Microbiol. 2018, 9.
I. Wiegand, K. Hilpert, R. E. Hancock, ‘Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances’, Nat. Protoc. 2008, 3, 163-175.
N. K. Taneja, J. S. Tyagi, ‘Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis’, J. Antimicrob. Chemother. 2007, 60, 288-293.
J. H. Jorgensen, J. F. Hindler, L. B. Reller, M. P. Weinstein, ‘New Consensus Guidelines from the Clinical and Laboratory Standards Institute for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria’, Clin. Infect. Dis. 2007, 44, 280-286.
J. van Meerloo, G. J. Kaspers, J. Cloos, Cell sensitivity assays: the MTT assay, vol. 731, Humana press, 2011.

Auteurs

Santosh Kumar Sahoo (S)

Department of chemical sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India.

Mohammad Naiyaz Ahmad (M)

Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.
AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

Grace Kaul (G)

Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.
AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

Srinivas Nanduri (S)

Department of chemical sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India.

Arunava Dasgupta (A)

Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.
AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

Sidharth Chopra (S)

Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.
AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

Venkata Madhavi Yaddanapudi (V)

Department of chemical sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH