Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches.

Phaeodactylum tricornutum CRISPR/Cas9 TPP riboswitch aptamer prediction diatoms thiamine biosynthesis thiamine uptake

Journal

The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884

Informations de publication

Date de publication:
09 2022
Historique:
received: 03 01 2022
accepted: 20 05 2022
pubmed: 3 6 2022
medline: 4 8 2022
entrez: 2 6 2022
Statut: ppublish

Résumé

Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for c. 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little information is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to supplementation with thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and targeted mutation of the TPP aptamer in the THIC gene encoding HMP-P synthase does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtTHIC is essential for thiamine biosynthesis and another gene, PtSSSP, is necessary for thiamine uptake. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.

Identifiants

pubmed: 35653609
doi: 10.1111/nph.18296
pmc: PMC9544697
doi:

Substances chimiques

Riboswitch 0
Thiamine Pyrophosphate Q57971654Y
Thiamine X66NSO3N35

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1853-1867

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/L002957/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M011194/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/M018180/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R021694/1
Pays : United Kingdom

Informations de copyright

© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

Références

Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
J Biol Chem. 1990 Jul 5;265(19):10857-64
pubmed: 2358444
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Mol Aspects Med. 2013 Apr-Jun;34(2-3):373-85
pubmed: 23506878
Nature. 2007 May 24;447(7143):497-500
pubmed: 17468745
Bioinformatics. 2015 May 15;31(10):1671-3
pubmed: 25583118
Protein Sci. 2019 Nov;28(11):1947-1951
pubmed: 31441146
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14622-7
pubmed: 23959877
Chem Biol. 2005 Dec;12(12):1325-35
pubmed: 16356850
Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20756-61
pubmed: 21068377
Biochemistry. 2010 Oct 19;49(41):8929-36
pubmed: 20873853
J Mol Evol. 1976 Mar 29;7(2):101-4
pubmed: 1263263
Cold Spring Harb Perspect Biol. 2019 Oct 1;11(10):
pubmed: 30181377
Biochim Biophys Acta. 2015 Mar;1850(3):565-76
pubmed: 24836521
Mol Biol Evol. 2011 Oct;28(10):2921-33
pubmed: 21551270
Nat Chem Biol. 2008 Dec;4(12):758-65
pubmed: 18953358
Algal Res. 2021 Jun;56:None
pubmed: 34084707
Nat Methods. 2011 Sep 29;8(10):785-6
pubmed: 21959131
Plant J. 2009 Mar;57(6):1140-50
pubmed: 19036032
ACS Synth Biol. 2020 Jun 19;9(6):1406-1417
pubmed: 32496044
J Phycol. 2016 Jun;52(3):320-8
pubmed: 27037670
ISME J. 2014 Aug;8(8):1727-38
pubmed: 24781899
Nucleic Acids Res. 2003 Jul 1;31(13):3429-31
pubmed: 12824340
Eukaryot Cell. 2006 Aug;5(8):1175-83
pubmed: 16896203
RNA. 2017 Jul;23(7):995-1011
pubmed: 28396576
mBio. 2017 Oct 10;8(5):
pubmed: 29018119
ACS Synth Biol. 2018 Sep 21;7(9):2074-2086
pubmed: 30165733
Plant Methods. 2016 Nov 24;12:49
pubmed: 27904648
Annu Rev Biochem. 2009;78:305-34
pubmed: 19298181
Nucleic Acids Res. 2021 Jan 8;49(D1):D545-D551
pubmed: 33125081
Methods Mol Biol. 2019;1962:227-245
pubmed: 31020564
Science. 1998 Jul 10;281(5374):237-40
pubmed: 9657713
Plant Cell. 2013 Jan;25(1):288-307
pubmed: 23341335
Bio Protoc. 2017 Dec 05;7(23):e2625
pubmed: 34595293
PLoS Comput Biol. 2011 Oct;7(10):e1002195
pubmed: 22039361
Nat Prod Rep. 2007 Oct;24(5):988-1008
pubmed: 17898894
Front Microbiol. 2012 Oct 19;3:375
pubmed: 23091473
ACS Synth Biol. 2014 Nov 21;3(11):839-43
pubmed: 24933124
Front Microbiol. 2015 May 12;6:434
pubmed: 26029181
Annu Rev Biochem. 2009;78:569-603
pubmed: 19348578
ISME J. 2014 Dec;8(12):2517-29
pubmed: 25171333
Nucleic Acids Res. 2009 Jan;37(Database issue):D1001-5
pubmed: 19029140
J Biol Chem. 2002 Dec 13;277(50):48949-59
pubmed: 12376536
Plant Sci. 2018 Aug;273:92-99
pubmed: 29907313
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20770-5
pubmed: 18093957
PLoS Genet. 2018 May 31;14(5):e1007429
pubmed: 29852014
Plant Cell. 2007 Nov;19(11):3437-50
pubmed: 17993623
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1762-71
pubmed: 22652568
J Am Chem Soc. 2012 Jun 6;134(22):9157-9
pubmed: 22568620
J Biol Chem. 2013 Oct 18;288(42):30693-30699
pubmed: 24014032
J Biol Chem. 2012 Dec 7;287(50):42333-43
pubmed: 23048037
J Am Chem Soc. 2011 Jun 22;133(24):9311-9
pubmed: 21534620
Methods. 2009 Jul;48(3):294-300
pubmed: 19233282
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Trends Genet. 2013 Aug;29(8):469-78
pubmed: 23623319
Mol Biol Evol. 2020 Nov 1;37(11):3243-3257
pubmed: 32918458
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19637-42
pubmed: 18048325
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14041-5
pubmed: 22826241

Auteurs

Marcel Llavero-Pasquina (M)

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.

Katrin Geisler (K)

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.

Andre Holzer (A)

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.

Payam Mehrshahi (P)

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.

Gonzalo I Mendoza-Ochoa (GI)

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.

Shelby A Newsad (SA)

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.

Matthew P Davey (MP)

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
Scottish Association of Marine Sciences, Oban, PA37 1QA, UK.

Alison G Smith (AG)

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi

Structural basis for molecular assembly of fucoxanthin chlorophyll

Koji Kato, Yoshiki Nakajima, Jian Xing et al.
1.00
Diatoms Photosystem I Protein Complex Chlorophyll Binding Proteins Cryoelectron Microscopy Light-Harvesting Protein Complexes
Plant Diseases Paenibacillus Paenibacillus polymyxa Biological Control Agents Fusarium
Diatoms Genome Phylogeny

Classifications MeSH