Paenibacillus as a Biocontrol Agent for Fungal Phytopathogens: Is P. polymyxa the Only One Worth Attention?


Journal

Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 14 08 2024
accepted: 14 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Control of fungal phytopathogens is a significant challenge in modern agriculture. The widespread use of chemical fungicides to control these pathogens often leads to environmental and food contamination. An eco-friendly alternative that can help reduce reliance on these chemicals is plant growth-promoting bacteria (PGPB), particularly those of the genus Paenibacillus, which appear to be highly effective. The review aims to summarize the existing knowledge on the potential of Paenibacillus spp. as fungal biocontrol agents, identify knowledge gaps, and answer whether other species of the genus Paenibacillus, in addition to Paenibacillus polymyxa, can also be effective biocontrol agents. Paenibacillus spp. can combat plant phytopathogens through various mechanisms, including the production of lipopeptides (such as fusaricidin, paenimyxin, and pelgipeptin), the induction of systemic resistance (ISR), hydrolytic enzymes (chitinase, cellulase, and glucanase), and volatile organic compounds. These properties enable Paenibacillus strains to suppress the growth of fungi such as Fusarium oxysporum, F. solani, Rhizoctonia solani, Botrytis cinerea, or Colletotrichum gloeosporioides. Notably, several strains of Paenibacillus, including P. polymyxa, P. illinoisensis KJA-424, P. lentimorbus B-30488, and P. elgii JCK1400, have demonstrated efficacy in controlling fungal diseases in plants. Importantly, many formulations with Paenibacillus strains have already been patented, and some are commercially available, but most of them contain only P. polymyxa. Nevertheless, considering the data presented in this review, we believe that other strains from the Paenibacillus genus (besides P. polymyxa) will also be commercialized and used in plant protection in the future. Importantly, there is still limited information regarding their impact on the native microbiota, particularly from the metataxonomic and metagenomic perspectives. Expanding knowledge in this area could enhance the effectiveness of biocontrol agents containing Paenibacillus spp., ensuring safe and sustainable use of biological fungicides.

Identifiants

pubmed: 39480531
doi: 10.1007/s00248-024-02450-8
pii: 10.1007/s00248-024-02450-8
doi:

Substances chimiques

Biological Control Agents 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

134

Informations de copyright

© 2024. The Author(s).

Références

Jiménez-Reyes MF, Carrasco H, Olea AF, Silva-Moreno E (2019) Natural compounds: a sustainable alternative to the phytopathogens control. J Chil Chem Soc 64:4459–4465. https://doi.org/10.4067/S0717-97072019000204459
doi: 10.4067/S0717-97072019000204459
Asad SA (2022) Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - a review. Ecol Complex 49:100978. https://doi.org/10.1016/j.ecocom.2021.100978
doi: 10.1016/j.ecocom.2021.100978
Chatterjee P, Niinemets Ü (2022) Improving plant stress resistance by growth-promoting bacteria and evaluating the improvements by volatile emissions. Plant Soil 476:403–419. https://doi.org/10.1007/s11104-022-05576-1
doi: 10.1007/s11104-022-05576-1
Dean R, Van Kan JAL, Pretorius ZA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
doi: 10.1111/j.1364-3703.2011.00783.x pubmed: 22471698
Liu K, Newman M, McInroy JA, et al (2017) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology® 107:928–936 https://doi.org/10.1094/PHYTO-02-17-0051-R
Schmey T, Tominello-Ramirez CS, Brune C, Stam R (2024) Alternaria diseases on potato and tomato. Mol Plant Pathol 25:e13435. https://doi.org/10.1111/mpp.13435
doi: 10.1111/mpp.13435 pubmed: 38476108
Bolívar-Anillo HJ, Garrido C, Collado IG (2020) Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochem Rev 19:721–740. https://doi.org/10.1007/s11101-019-09603-5
doi: 10.1007/s11101-019-09603-5
Zhu M, Duan X, Cai P et al (2022) Biocontrol action of Trichothecium roseum against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici. Front Sustain Food Syst 6:998830. https://doi.org/10.3389/fsufs.2022.998830
doi: 10.3389/fsufs.2022.998830
Fernandez J, Orth K (2018) Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol 26:582–597. https://doi.org/10.1016/j.tim.2017.12.007
doi: 10.1016/j.tim.2017.12.007 pubmed: 29395728
Barbara DJ, Clewes E (2003) Plant pathogenic Verticillium species: how many of them are there? Mol Plant Pathol 4:297–305. https://doi.org/10.1046/j.1364-3703.2003.00172.x
doi: 10.1046/j.1364-3703.2003.00172.x pubmed: 20569390
Parveen T, Sharma K (2015) Pythium diseases, control and management strategies: a review. Int J Plant Anim Environ Sci 5:244–257
Nazareno ES, Li F, Smith M et al (2018) Puccinia coronata f. sp. avenae: a threat to global oat production. Mol Plant Pathol 19:1047–1060. https://doi.org/10.1111/mpp.12608
doi: 10.1111/mpp.12608 pubmed: 28846186
Akber MA, Mubeen M, Sohail MA et al (2023) Global distribution, traditional and modern detection, diagnostic, and management approaches of Rhizoctonia solani associated with legume crops. Front Microbiol 13:1091288. https://doi.org/10.3389/fmicb.2022.1091288
doi: 10.3389/fmicb.2022.1091288 pubmed: 36815202
Jiménez-Díaz RM, Castillo P, Jiménez-Gasco MDM et al (2015) Fusarium wilt of chickpeas: biology, ecology and management. Crop Prot 73:16–27. https://doi.org/10.1016/j.cropro.2015.02.023
doi: 10.1016/j.cropro.2015.02.023
Ngegba PM, Cui G, Khalid MZ, Zhong G (2022) Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture 12:600. https://doi.org/10.3390/agriculture12050600
doi: 10.3390/agriculture12050600
Dobrzyński J, Jakubowska Z, Kulkova I et al (2023) Biocontrol of fungal phytopathogens by Bacillus pumilus. Front Microbiol 14:1194606. https://doi.org/10.3389/fmicb.2023.1194606
doi: 10.3389/fmicb.2023.1194606 pubmed: 37560520
Montanarella L, Panagos P (2021) The relevance of sustainable soil management within the European Green Deal. Land Use Policy 100:104950. https://doi.org/10.1016/j.landusepol.2020.104950
doi: 10.1016/j.landusepol.2020.104950
Dobrzyński J, Wróbel B, Górska EB (2023) Taxonomy, ecology, and cellulolytic properties of the genus Bacillus and related genera. Agriculture 13:1979. https://doi.org/10.3390/agriculture13101979
doi: 10.3390/agriculture13101979
Kulkova I, Wróbel B, Dobrzyński J (2024) Serratia spp. as plant growth-promoting bacteria alleviating salinity, drought, and nutrient imbalance stresses. Front Microbiol 15:1342331. https://doi.org/10.3389/fmicb.2024.1342331
doi: 10.3389/fmicb.2024.1342331 pubmed: 38562478
Górska EB, Stępień W, Hewelke E et al (2024) Response of soil microbiota to various soil management practices in 100-year-old agriculture field and identification of potential bacterial ecological indicator. Ecol Ind 158:111545. https://doi.org/10.1016/j.ecolind.2024.111545
doi: 10.1016/j.ecolind.2024.111545
Bouchard-Rochette M, Machrafi Y, Cossus L et al (2022) Bacillus pumilus PTB180 and Bacillus subtilis PTB185: production of lipopeptides, antifungal activity, and biocontrol ability against Botrytis cinerea. Biol Control 170:104925. https://doi.org/10.1016/j.biocontrol.2022.104925
doi: 10.1016/j.biocontrol.2022.104925
Elsharkawy M, Sakran R, Ahmad A et al (2022) Induction of systemic resistance against sheath blight in rice by different Pseudomonas isolates. Life 12:349. https://doi.org/10.3390/life12030349
doi: 10.3390/life12030349 pubmed: 35330100
Sharma S, Kumar S, Khajuria A et al (2020) Biocontrol potential of chitinases produced by newly isolated Chitinophaga sp. S167. World J Microbiol Biotechnol 36:90. https://doi.org/10.1007/s11274-020-02864-9
doi: 10.1007/s11274-020-02864-9 pubmed: 32524202
Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Front Microbiol 6:. https://doi.org/10.3389/fmicb.2015.00780
Dimkić I, Janakiev T, Petrović M et al (2022) Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - a review. Physiol Mol Plant Pathol 117:101754. https://doi.org/10.1016/j.pmpp.2021.101754
doi: 10.1016/j.pmpp.2021.101754
Soenens A, Imperial J (2020) Biocontrol capabilities of the genus Serratia. Phytochem Rev 19:577–587. https://doi.org/10.1007/s11101-019-09657-5
doi: 10.1007/s11101-019-09657-5
Abdelmoteleb A, González-Mendoza D (2020) A novel Streptomyces rhizobacteria from desert soil with diverse anti-fungal properties. Rhizosphere 16:100243. https://doi.org/10.1016/j.rhisph.2020.100243
doi: 10.1016/j.rhisph.2020.100243
Patowary R, Deka H (2020) Paenibacillus. In: Beneficial microbes in agro-ecology. Elsevier, pp 339–361.  https://doi.org/10.1016/B978-0-12-823414-3.00017-4
Pandey AK, Barbetti MJ, Lamichhane JR (2023) Paenibacillus polymyxa. Trends Microbiol 31:657–659. https://doi.org/10.1016/j.tim.2022.11.010
doi: 10.1016/j.tim.2022.11.010 pubmed: 36564337
Grady EN, MacDonald J, Liu L et al (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15:203. https://doi.org/10.1186/s12934-016-0603-7
doi: 10.1186/s12934-016-0603-7 pubmed: 27905924 pmcid: 5134293
Seldin L (2011) Paenibacillus, nitrogen fixation and soil fertility. In: Logan NA, Vos P (eds) Endospore-forming soil bacteria. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 287–307
doi: 10.1007/978-3-642-19577-8_15
Govindasamy V, Senthilkumar M, Magheshwaran V et al (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 333–364
doi: 10.1007/978-3-642-13612-2_15
Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. https://doi.org/10.1016/j.tim.2007.12.009
doi: 10.1016/j.tim.2007.12.009 pubmed: 18289856
Wu L, Wu H-J, Qiao J, et al (2015) Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Front Microbiol 6:. https://doi.org/10.3389/fmicb.2015.01395
Etesami H, Jeong BR, Glick BR (2023) Biocontrol of plant diseases by Bacillus spp. Physiol Mol Plant Pathol 126:102048. https://doi.org/10.1016/j.pmpp.2023.102048
doi: 10.1016/j.pmpp.2023.102048
Chen K, Tian Z, He H et al (2020) Bacillus species as potential biocontrol agents against citrus diseases. Biol Control 151:104419. https://doi.org/10.1016/j.biocontrol.2020.104419
doi: 10.1016/j.biocontrol.2020.104419
Lal S, Tabacchioni S (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol 49:2–10. https://doi.org/10.1007/s12088-009-0008-y
doi: 10.1007/s12088-009-0008-y pubmed: 23100748 pmcid: 3450047
Langendries S, Goormachtig S (2021) Paenibacillus polymyxa, a Jack of all trades. Environ Microbiol 23:5659–5669. https://doi.org/10.1111/1462-2920.15450
doi: 10.1111/1462-2920.15450 pubmed: 33684235
Mishra P, Mishra J, Dwivedi SK, Arora NK (2020) Microbial enzymes in biocontrol of phytopathogens. In: Arora NK, Mishra J, Mishra V (eds) Microbial enzymes: roles and applications in industries. Springer Singapore, Singapore, pp 259–285.  https://doi.org/10.1007/978-981-15-1710-5_10
Kulkova I, Dobrzyński J, Kowalczyk P et al (2023) Plant growth promotion using Bacillus cereus. IJMS 24:9759. https://doi.org/10.3390/ijms24119759
doi: 10.3390/ijms24119759 pubmed: 37298706 pmcid: 10253305
Veliz EA, Martínez-Hidalgo P, Hirsch AM et al (2017) Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology 3:689–705. https://doi.org/10.3934/microbiol.2017.3.689
doi: 10.3934/microbiol.2017.3.689 pubmed: 31294182 pmcid: 6604996
Drewnowska JM, Fiodor A, Barboza-Corona JE, Swiecicka I (2020) Chitinolytic activity of phylogenetically diverse Bacillus cereus sensu lato from natural environments. Syst Appl Microbiol 43:126075. https://doi.org/10.1016/j.syapm.2020.126075
doi: 10.1016/j.syapm.2020.126075 pubmed: 32173136
Itoh T, Kimoto H (2019) Bacterial chitinase system as a model of chitin biodegradation. In: Yang Q, Fukamizo T (eds) Targeting chitin-containing organisms. Springer Singapore, Singapore, pp 131–151.  https://doi.org/10.1007/978-981-13-7318-3_7
Chen W, Jiang X, Yang Q (2020) Glycoside hydrolase family 18 chitinases: the known and the unknown. Biotechnol Adv 43:107553. https://doi.org/10.1016/j.biotechadv.2020.107553
doi: 10.1016/j.biotechadv.2020.107553 pubmed: 32439576
Jung WJ, An KN, Jin YL et al (2003) Biological control of damping-off caused by Rhizoctonia solani using chitinase-producing Paenibacillus illinoisensis KJA-424. Soil Biol Biochem 35:1261–1264. https://doi.org/10.1016/S0038-0717(03)00187-1
doi: 10.1016/S0038-0717(03)00187-1
Meena S, Gothwal RK, Saxena J et al (2014) Chitinase production by a newly isolated thermotolerant Paenibacillus sp. BISR-047. Ann Microbiol 64:787–797. https://doi.org/10.1007/s13213-013-0715-9
doi: 10.1007/s13213-013-0715-9
Subbanna ARNS, Khan MS, Shivashankara H (2016) Characterization of antifungal Paenibacillus illinoisensis strain UKCH21 and its chitinolytic properties. Afr J Microbiol Res 10:1380–1387. https://doi.org/10.5897/AJMR2016.8248
doi: 10.5897/AJMR2016.8248
El-Sayed M, Nassar O, Nasr H, Kobisi AE-N (2018) Efficacy of thermophilic soil-isolated Paenibacillus sp. NBR10 as a chitinolytic and biocontrol bacterium-in vitro study. Egypt J Bot 0:0–0. https://doi.org/10.21608/ejbo.2018.4698.1194
Seo D-J, Lee Y-S, Kim K-Y, Jung W-J (2016) Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Collectotrichum gloeosporioides in vitro. Microb Pathog 96:10–14. https://doi.org/10.1016/j.micpath.2016.04.016
doi: 10.1016/j.micpath.2016.04.016 pubmed: 27133265
Singh AK, Chhatpar HS (2011) Purification and characterization of chitinase from Paenibacillus sp. D1. Appl Biochem Biotechnol 164:77–88. https://doi.org/10.1007/s12010-010-9116-8
doi: 10.1007/s12010-010-9116-8 pubmed: 21049291
Kim YC, Hur JY, Park SK (2019) Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73. Eur J Plant Pathol 155:253–263. https://doi.org/10.1007/s10658-019-01768-1
doi: 10.1007/s10658-019-01768-1
Ma J, Qin Z, Zhou P et al (2022) Structural insights into the substrate recognition and catalytic mechanism of a fungal glycoside hydrolase family 81 β-1,3-glucanase. Enzyme Microb Technol 153:109948. https://doi.org/10.1016/j.enzmictec.2021.109948
doi: 10.1016/j.enzmictec.2021.109948 pubmed: 34801773
Wang R, Long Z, Liang X et al (2021) The role of a β-1,3–1,4-glucanase derived from Bacillus amyloliquefaciens FS6 in the protection of ginseng against Botrytis cinerea and Alternaria panax. Biol Control 164:104765. https://doi.org/10.1016/j.biocontrol.2021.104765
doi: 10.1016/j.biocontrol.2021.104765
Zhai Y, Zhu J, Tan T et al (2021) Isolation and characterization of antagonistic Paenibacillus polymyxa HX-140 and its biocontrol potential against Fusarium wilt of cucumber seedlings. BMC Microbiol 21:75. https://doi.org/10.1186/s12866-021-02131-3
doi: 10.1186/s12866-021-02131-3 pubmed: 33676418 pmcid: 7936408
Yang F, Jiang H, Ma K et al (2024) Genomic and phenotypic analyses reveal Paenibacillus polymyxa PJH16 is a potential biocontrol agent against cucumber Fusarium wilt. Front Microbiol 15:1359263. https://doi.org/10.3389/fmicb.2024.1359263
doi: 10.3389/fmicb.2024.1359263 pubmed: 38591040 pmcid: 11000672
Liu Y, Wang R, Cao Y et al (2016) Identification and antagonistic activity of endophytic bacterial strain Paenibacillus sp. 5 L8 isolated from the seeds of maize (Zea mays L., Jingke 968). Ann Microbiol 66:653–660. https://doi.org/10.1007/s13213-015-1150-x
doi: 10.1007/s13213-015-1150-x
Koeck DE, Pechtl A, Zverlov VV, Schwarz WH (2014) Genomics of cellulolytic bacteria. Curr Opin Biotechnol 29:171–183. https://doi.org/10.1016/j.copbio.2014.07.002
doi: 10.1016/j.copbio.2014.07.002 pubmed: 25104562
Budi SW, Van Tuinen D, Arnould C et al (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl Soil Ecol 15:191–199. https://doi.org/10.1016/S0929-1393(00)00095-0
doi: 10.1016/S0929-1393(00)00095-0
Xu S, Kim B-S (2016) Evaluation of Paenibacillus polymyxa strain SC09-21 for biocontrol of Phytophthora blight and growth stimulation in pepper plants. Trop plant pathol 41:162–168. https://doi.org/10.1007/s40858-016-0077-5
doi: 10.1007/s40858-016-0077-5
Naing KW, Anees M, Kim SJ et al (2014) Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann Microbiol 64:55–63. https://doi.org/10.1007/s13213-013-0632-y
doi: 10.1007/s13213-013-0632-y
Yuan H, Yuan M, Shi B et al (2022) Biocontrol activity and action mechanism of Paenibacillus polymyxa strain Nl4 against pear Valsa canker caused by Valsa pyri. Front Microbiol 13:950742. https://doi.org/10.3389/fmicb.2022.950742
doi: 10.3389/fmicb.2022.950742 pubmed: 35935238
Kim YS, Balaraju K, Jeon Y (2016) Biological control of apple anthracnose by Paenibacillus polymyxa APEC128, an antagonistic rhizobacterium. The Plant Pathology Journal 32:251–259. https://doi.org/10.5423/PPJ.OA.01.2016.0015
doi: 10.5423/PPJ.OA.01.2016.0015 pubmed: 27298600 pmcid: 4892821
Xu SJ, Kim BS (2014) Biocontrol of Fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology 42:158–166. https://doi.org/10.5941/MYCO.2014.42.2.158
doi: 10.5941/MYCO.2014.42.2.158 pubmed: 25071385 pmcid: 4112232
Taheri E, Tarighi S, Taheri P (2022) Characterization of root endophytic Paenibacillus polymyxa isolates with biocontrol activity against Xanthomonas translucens and Fusarium graminearum. Biol Control 174:105031. https://doi.org/10.1016/j.biocontrol.2022.105031
doi: 10.1016/j.biocontrol.2022.105031
Zhao H, Shao D, Jiang C et al (2017) Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 101:5951–5960. https://doi.org/10.1007/s00253-017-8396-0
doi: 10.1007/s00253-017-8396-0 pubmed: 28685194
Yang R, Lei S, Xu X et al (2020) Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Appl Microbiol Biotechnol 104:8077–8087. https://doi.org/10.1007/s00253-020-10801-x
doi: 10.1007/s00253-020-10801-x pubmed: 32813066
Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36:4–31. https://doi.org/10.1002/med.21321
doi: 10.1002/med.21321 pubmed: 24866700
Théatre A, Hoste ACR, Rigolet A et al (2021) Bacillus sp.: a remarkable source of bioactive lipopeptides. In: Hausmann R, Henkel M (eds) Biosurfactants for the biobased economy. Springer International Publishing, Cham, pp 123–179
doi: 10.1007/10_2021_182
Lebedeva J, Jukneviciute G, Čepaitė R et al (2021) Genome mining and characterization of biosynthetic gene clusters in two cave strains of Paenibacillus sp. Front Microbiol 11:612483. https://doi.org/10.3389/fmicb.2020.612483
doi: 10.3389/fmicb.2020.612483 pubmed: 33505378 pmcid: 7829367
Jeong H, Choi S-K, Ryu C-M, Park S-H (2019) Chronicle of a soil bacterium: Paenibacillus polymyxa E681 as a tiny guardian of plant and human health. Front Microbiol 10:467. https://doi.org/10.3389/fmicb.2019.00467
doi: 10.3389/fmicb.2019.00467 pubmed: 30930873
Olishevska S, Nickzad A, Déziel E (2019) Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl Microbiol Biotechnol 103:1189–1215. https://doi.org/10.1007/s00253-018-9541-0
doi: 10.1007/s00253-018-9541-0 pubmed: 30603850
Kochi S, Fujimaki T, Kanai Y, et al (2007) Strains belonging to the genus Paenibacillus and method of controlling plant disease by using these strains or culture thereof (U.S. Patent No. US7935335B2). https://patents.google.com/patent/US7935335B2/en
Kowalczyk R, Harris PWR, Williams GM et al (2017) Peptide lipidation – a synthetic strategy to afford peptide based therapeutics. In: Sunna A, Care A, Bergquist PL (eds) Peptides and peptide-based biomaterials and their biomedical applications. Springer International Publishing, Cham, pp 185–227
doi: 10.1007/978-3-319-66095-0_9
Kajimura Y, Kaneda M (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8 taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 49:129–135. https://doi.org/10.7164/antibiotics.49.129
doi: 10.7164/antibiotics.49.129
Mousa WK, Raizada MN (2015) Biodiversity of genes encoding anti-microbial traits within plant associated microbes. Front Plant Sci 6:. https://doi.org/10.3389/fpls.2015.00231
Ali MdA, Lou Y, Hafeez R et al (2021) Functional analysis and genome mining reveal high potential of biocontrol and plant growth promotion in nodule-inhabiting bacteria within Paenibacillus polymyxa complex. Front Microbiol 11:618601. https://doi.org/10.3389/fmicb.2020.618601
doi: 10.3389/fmicb.2020.618601 pubmed: 33537018
Jiang A, Zou C, Xu X et al (2022) Complete genome sequence of biocontrol strain Paenibacillus peoriae HJ-2 and further analysis of its biocontrol mechanism. BMC Genomics 23:161. https://doi.org/10.1186/s12864-022-08330-0
doi: 10.1186/s12864-022-08330-0 pubmed: 35209846
Vater J, Niu B, Dietel K, Borriss R (2015) Characterization of novel fusaricidins produced by Paenibacillus polymyxa -M1 using MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 26:1548–1558. https://doi.org/10.1007/s13361-015-1130-1
doi: 10.1007/s13361-015-1130-1 pubmed: 26100395
Li Y, Chen S (2019) Fusaricidin produced by Paenibacillus polymyxa WLY78 induces systemic resistance against Fusarium wilt of cucumber. IJMS 20:5240. https://doi.org/10.3390/ijms20205240
doi: 10.3390/ijms20205240 pubmed: 31652608
Liu Z, Fan L, Zhang D, Li Y (2011) Antifungal depsipeptide compounds from Paenibacillus polymyxa HY96-2. Chem Nat Compd 47:496–497. https://doi.org/10.1007/s10600-011-9978-1
doi: 10.1007/s10600-011-9978-1
Reimann M, Sandjo LP, Antelo L et al (2017) A new member of the fusaricidin family – structure elucidation and synthesis of fusaricidin E. Beilstein J Org Chem 13:1430–1438. https://doi.org/10.3762/bjoc.13.140
doi: 10.3762/bjoc.13.140 pubmed: 28781709
Raza W, Yang W, Shen QR (2008) Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J Plant Pathol 90:419–430
Ma M, Wang C, Ding Y et al (2011) Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity. J Bacteriol 193:311–312. https://doi.org/10.1128/JB.01234-10
doi: 10.1128/JB.01234-10 pubmed: 21037012
Luo Y, Cheng Y, Yi J et al (2018) Complete genome sequence of industrial biocontrol strain Paenibacillus polymyxa HY96-2 and further analysis of its biocontrol mechanism. Front Microbiol 9:1520. https://doi.org/10.3389/fmicb.2018.01520
doi: 10.3389/fmicb.2018.01520 pubmed: 30050512
Lee SH, Cho YE, Park S-H et al (2013) An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41:49–58. https://doi.org/10.1007/s12600-012-0263-z
doi: 10.1007/s12600-012-0263-z
Yang A, Zeng S, Yu L et al (2018) Characterization and antifungal activity against Pestalotiopsis of a fusaricidin-type compound produced by Paenibacillus polymyxa Y-1. Pestic Biochem Physiol 147:67–74. https://doi.org/10.1016/j.pestbp.2017.08.012
doi: 10.1016/j.pestbp.2017.08.012 pubmed: 29933995
Lin S, Chen X, Xie L et al (2023) Biocontrol potential of lipopeptides produced by Paenibacillus polymyxa AF01 against Neoscytalidium dimidiatum in pitaya. Front Microbiol 14:1188722. https://doi.org/10.3389/fmicb.2023.1188722
doi: 10.3389/fmicb.2023.1188722 pubmed: 37266020
Zhang Q, Xing C, Li S et al (2021) In vitro antagonism and biocontrol effects of Paenibacillus polymyxa JY1-5 against Botrytis cinerea in tomato. Biol Control 160:104689. https://doi.org/10.1016/j.biocontrol.2021.104689
doi: 10.1016/j.biocontrol.2021.104689
Tsai S-H, Chen Y-T, Yang Y-L, et al (2022) The potential biocontrol agent Paenibacillus polymyxa TP3 produces fusaricidin-type compounds involved in the antagonism against gray mold pathogen Botrytis cinerea. Phytopathology® 112:775–783. https://doi.org/10.1094/PHYTO-04-21-0178-R
Hao Z, Van Tuinen D, Wipf D et al (2017) Biocontrol of grapevine aerial and root pathogens by Paenibacillus sp. strain B2 and paenimyxin in vitro and in planta. Biol Control 109:42–50. https://doi.org/10.1016/j.biocontrol.2017.03.004
doi: 10.1016/j.biocontrol.2017.03.004
Hsu L-H, Wang H-F, Sun P-L et al (2017) The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species. Int J Antimicrob Agents 49:740–748. https://doi.org/10.1016/j.ijantimicag.2017.01.029
doi: 10.1016/j.ijantimicag.2017.01.029 pubmed: 28433743
Haggag WM (2008) Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Archives Of Phytopathology And Plant Protection 41:477–491. https://doi.org/10.1080/03235400600833704
doi: 10.1080/03235400600833704
Kim J, Le KD, Yu NH et al (2020) Structure and antifungal activity of pelgipeptins from Paenibacillus elgii against phytopathogenic fungi. Pestic Biochem Physiol 163:154–163. https://doi.org/10.1016/j.pestbp.2019.11.009
doi: 10.1016/j.pestbp.2019.11.009 pubmed: 31973853
Naing KW, Lee YS, Nguyen XH et al (2015) Isolation and characterization of an antimicrobial lipopeptide produced by Paenibacillus ehimensis MA2012. J Basic Microbiol 55:857–868. https://doi.org/10.1002/jobm.201400505
doi: 10.1002/jobm.201400505 pubmed: 25588946
Cai F, Yang C, Ma T et al (2024) An endophytic Paenibacillus polymyxa hg18 and its biocontrol potential against Fusarium oxysporum f. sp. cucumerinum. Biological Control 188:105380. https://doi.org/10.1016/j.biocontrol.2023.105380
doi: 10.1016/j.biocontrol.2023.105380
Ling L, Zhao Y, Tu Y et al (2021) The inhibitory effect of volatile organic compounds produced by Bacillus subtilis CL2 on pathogenic fungi of wolfberry. J Basic Microbiol 61:110–121. https://doi.org/10.1002/jobm.202000522
doi: 10.1002/jobm.202000522 pubmed: 33368461
Poveda J (2021) Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl Soil Ecol 168:104118. https://doi.org/10.1016/j.apsoil.2021.104118
doi: 10.1016/j.apsoil.2021.104118
Schmidt R, Cordovez V, De Boer W et al (2015) Volatile affairs in microbial interactions. ISME J 9:2329–2335. https://doi.org/10.1038/ismej.2015.42
doi: 10.1038/ismej.2015.42 pubmed: 26023873
Raza W, Yuan J, Ling N et al (2015) Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol Control 80:89–95. https://doi.org/10.1016/j.biocontrol.2014.09.004
doi: 10.1016/j.biocontrol.2014.09.004
Wang X, Li Q, Sui J et al (2019) Isolation and characterization of antagonistic Bacteria Paenibacillus jamilae HS-26 and their effects on plant growth. Biomed Res Int 2019:1–13. https://doi.org/10.1155/2019/3638926
doi: 10.1155/2019/3638926
Wu F, Tong X, Zhang L et al (2020) Suppression of Rhizopus fruit rot by volatile organic compounds produced by Paenibacillus polymyxa CF05. Biocontrol Sci Tech 30:1351–1364. https://doi.org/10.1080/09583157.2020.1826902
doi: 10.1080/09583157.2020.1826902
Grahovac J, Pajčin I, Vlajkov V (2023) Bacillus VOCs in the context of biological control. Antibiotics 12:581. https://doi.org/10.3390/antibiotics12030581
doi: 10.3390/antibiotics12030581 pubmed: 36978448
Wang C, Wang Z, Qiao X et al (2013) Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341:45–51. https://doi.org/10.1111/1574-6968.12088
doi: 10.1111/1574-6968.12088 pubmed: 23351181
Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M et al (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52. https://doi.org/10.1016/j.bcab.2017.11.007
doi: 10.1016/j.bcab.2017.11.007
Tyc O, Zweers H, De Boer W, Garbeva P (2015) Volatiles in inter-specific bacterial interactions. Front Microbiol 6:. https://doi.org/10.3389/fmicb.2015.01412
Liu W, Mu W, Zhu B et al (2008) Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agricultural Sciences in China 7:1104–1114. https://doi.org/10.1016/S1671-2927(08)60153-4
doi: 10.1016/S1671-2927(08)60153-4
Elbouazaoui A, Sijilmassi B, Maafa I, et al (2022) Biocontrol activity of Bacillus , Paenibacillus and Pseudomonas against Fusarium wilt of chickpea in Morocco. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 72:847–859 https://doi.org/10.1080/09064710.2022.2100819
Xie S, Si H, Xue Y et al (2024) Efficacy of rhizobacteria Paenibacillus polymyxa SY42 for the biological control of Atractylodes chinensis root rot. Microb Pathog 187:106517. https://doi.org/10.1016/j.micpath.2023.106517
doi: 10.1016/j.micpath.2023.106517 pubmed: 38159617
Costa A, Corallo B, Amarelle V et al (2022) Paenibacillus sp. Strain UY79, isolated from a root nodule of Arachis villosa, displays a broad spectrum of antifungal activity. Appl Environ Microbiol 88:e01645-e1721. https://doi.org/10.1128/AEM.01645-21
doi: 10.1128/AEM.01645-21 pubmed: 34757818
CoconuboGuio LC, Sinuco León DC, Castellanos Hernández L (2020) Fungicidal activity of volatile organic compounds from Paenibacillus bacteria against Colletotrichum gloeosporioides. Rev colomb quim 49:20–25. https://doi.org/10.15446/rev.colomb.quim.v1n49.81996
doi: 10.15446/rev.colomb.quim.v1n49.81996
Stringlis IA, Yu K, Feussner K, et al (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci USA 115:. https://doi.org/10.1073/pnas.1722335115
Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
doi: 10.1146/annurev-phyto-082712-102340 pubmed: 24906124
Gkizi D, González Gil A, Pardal AJ et al (2021) The bacterial biocontrol agent Paenibacillus alvei K165 confers inherited resistance to Verticillium dahliae. J Exp Bot 72:4565–4576. https://doi.org/10.1093/jxb/erab154
doi: 10.1093/jxb/erab154 pubmed: 33829257
Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68:485–512. https://doi.org/10.1146/annurev-arplant-042916-041132
doi: 10.1146/annurev-arplant-042916-041132 pubmed: 28226238
Samain E, Van Tuinen D, Jeandet P et al (2017) Biological control of Septoria leaf blotch and growth promotion in wheat by Paenibacillus sp. strain B2 and Curtobacterium plantarum strain EDS. Biol Control 114:87–96. https://doi.org/10.1016/j.biocontrol.2017.07.012
doi: 10.1016/j.biocontrol.2017.07.012
Selim S, Negrel J, Wendehenne D et al (2010) Stimulation of defense reactions in Medicago truncatula by antagonistic lipopeptides from Paenibacillus sp. strain B2. Appl Environ Microbiol 76:7420–7428. https://doi.org/10.1128/AEM.00171-10
doi: 10.1128/AEM.00171-10 pubmed: 20870792
Fatouros G, Gkizi D, Fragkogeorgi GA et al (2018) Biological control of Pythium, Rhizoctonia and Sclerotinia in lettuce: association of the plant protective activity of the bacterium Paenibacillus alvei K165 with the induction of systemic resistance. Plant Pathol 67:418–425. https://doi.org/10.1111/ppa.12747
doi: 10.1111/ppa.12747
Du N, Shi L, Yuan Y et al (2017) Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Microbiol Res 202:1–10. https://doi.org/10.1016/j.micres.2017.04.013
doi: 10.1016/j.micres.2017.04.013 pubmed: 28647117
Sato I, Yoshida S, Iwamoto Y et al (2014) Suppressive potential of Paenibacillus strains isolated from the tomato phyllosphere against Fusarium crown and root rot of tomato. Microb Environ 29:168–177. https://doi.org/10.1264/jsme2.ME13172
doi: 10.1264/jsme2.ME13172
Chen B, Han H, Hou J et al (2022) Control of maize sheath blight and elicit induced systemic resistance using Paenibacillus polymyxa strain SF05. Microorganisms 10:1318. https://doi.org/10.3390/microorganisms10071318
doi: 10.3390/microorganisms10071318 pubmed: 35889037
Kim A-Y, Shahzad R, Kang S-M et al (2017) Paenibacillus terrae AY-38 resistance against Botrytis cinerea in Solanum lycopersicum L. plants through defence hormones regulation. Journal of Plant Interactions 12:244–253. https://doi.org/10.1080/17429145.2017.1319502
doi: 10.1080/17429145.2017.1319502
Dixit R, Agrawal L, Singh SP et al (2018) Paenibacillus lentimorbus induces autophagy for protecting tomato from Sclerotium rolfsii infection. Microbiol Res 215:164–174. https://doi.org/10.1016/j.micres.2018.07.008
doi: 10.1016/j.micres.2018.07.008 pubmed: 30172304
Zhu Y, Zhang J, Gao X et al (2024) Metabolites from a co-culture of Trichoderma yunnanense and Paenibacillus peoriae improve resistance to corm rot disease in Crocus sativus. Ind Crops Prod 213:118465. https://doi.org/10.1016/j.indcrop.2024.118465
doi: 10.1016/j.indcrop.2024.118465
Zhang F, Li X-L, Zhu S-J et al (2018) Biocontrol potential of Paenibacillus polymyxa against Verticillium dahliae infecting cotton plants. Biol Control 127:70–77. https://doi.org/10.1016/j.biocontrol.2018.08.021
doi: 10.1016/j.biocontrol.2018.08.021
Tupinambá G, Da Silva AJR, Alviano CS et al (2008) Antimicrobial activity of Paenibacillus polymyxa SCE2 against some mycotoxin-producing fungi. J Appl Microbiol 105:1044–1053. https://doi.org/10.1111/j.1365-2672.2008.03844.x
doi: 10.1111/j.1365-2672.2008.03844.x pubmed: 18498348
Gkikas F-I, Tako A, Gkizi D et al (2021) Paenibacillus alvei K165 and Fusarium oxysporum F2: potential biocontrol agents against Phaeomoniella chlamydospora in grapevines. Plants 10:207. https://doi.org/10.3390/plants10020207
doi: 10.3390/plants10020207 pubmed: 33499084
Schoina C, Stringlis IA, Pantelides IS et al (2011) Evaluation of application methods and biocontrol efficacy of Paenibacillus alvei strain K-165, against the cotton black root rot pathogen Thielaviopsis basicola. Biol Control 58:68–73. https://doi.org/10.1016/j.biocontrol.2011.04.002
doi: 10.1016/j.biocontrol.2011.04.002
Markakis EA, Tjamos SE, Antoniou PP et al (2016) Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165. Biocontrol 61:293–303. https://doi.org/10.1007/s10526-015-9669-0
doi: 10.1007/s10526-015-9669-0
Han J, Chen D, Huang J et al (2015) Antifungal activity and biocontrol potential of Paenibacillus polymyxa HT16 against white rot pathogen ( Coniella diplodiella Speq.) in table grapes. Biocontrol Sci Tech 25:1120–1132. https://doi.org/10.1080/09583157.2015.1036003
doi: 10.1080/09583157.2015.1036003
Jeon SW, Naing KW, Lee YS et al (2015) Promotion of growth and biocontrol of brown patch disease by inoculation of Paenibacillus ehimensis KWN38 in bentgrass. Hortic Environ Biotechnol 56:263–271. https://doi.org/10.1007/s13580-015-0109-y
doi: 10.1007/s13580-015-0109-y
Santiago R, Huiliñir C, Cottet L, Castillo A (2016) Microbiological characterization for a new wild strain of Paenibacillus polymyxa with antifungal activity against Botrytis cinerea. Biol Control 103:251–260. https://doi.org/10.1016/j.biocontrol.2016.10.002
doi: 10.1016/j.biocontrol.2016.10.002
Xu SJ, Hong SJ, Choi W, Kim BS (2014) Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. The Plant Pathology Journal 30:102–108. https://doi.org/10.5423/PPJ.OA.05.2013.0052
doi: 10.5423/PPJ.OA.05.2013.0052 pubmed: 25288992 pmcid: 4174836
Gu L, Bai Z, Jin B et al (2010) Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater. J Environ Sci 22:1407–1412. https://doi.org/10.1016/S1001-0742(09)60267-9
doi: 10.1016/S1001-0742(09)60267-9
Lai K, Chen S, Hu M et al (2012) Control of postharvest green mold of citrus fruit by application of endophytic Paenibacillus polymyxa strain SG-6. Postharvest Biol Technol 69:40–48. https://doi.org/10.1016/j.postharvbio.2012.03.001
doi: 10.1016/j.postharvbio.2012.03.001
Haidar R, Yacoub A, Roudet J, Fermaud M, Rey P (2021) Application methods and modes of action of Pantoea agglomerans and Paenibacillus sp., to control the grapevine trunk disease-pathogen, Neofusicoccum parvum. OENO One 3:1–16. https://doi.org/10.20870/oenoone.2021.55.3.4530
Chávez-Ramírez B, Kerber-Díaz JC, Acoltzi-Conde MC, Ibarra JA, Vásquez-Murrieta M-S, Estrada-de los Santos P (2020) Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi. Microbiol. Res. 230:126347. https://doi.org/10.1016/j.micres.2019.126347
Weselowski B, Nathoo N, Eastman AW et al (2016) Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol 16:244. https://doi.org/10.1186/s12866-016-0860-y
doi: 10.1186/s12866-016-0860-y pubmed: 27756215 pmcid: 5069919
Ghazalibiglar H, Hampton JG, Van ZijlldeJong E, Holyoake A (2016) Evaluation of Paenibacillus spp. isolates for the biological control of black rot in Brassica oleracea var. capitata (cabbage). Biocontrol Sci Tech 26:504–515. https://doi.org/10.1080/09583157.2015.1129052
doi: 10.1080/09583157.2015.1129052
Suprapta DN (2022) Biocontrol of anthracnose disease on chili pepper using a formulation containing Paenibacillus polymyxa C1. Front Sustain Food Syst 5:782425. https://doi.org/10.3389/fsufs.2021.782425
doi: 10.3389/fsufs.2021.782425
Nasran HS, Mohd Yusof H, Halim M, Abdul Rahman N (2020) Optimization of protective agents for the freeze-drying of Paenibacillus polymyxa Kp10 as a potential biofungicide. Molecules 25:2618. https://doi.org/10.3390/molecules25112618
doi: 10.3390/molecules25112618 pubmed: 32512825 pmcid: 7321406
Kim YS, Kotnala B, Kim YH, Jeon Y (2016) Biological characteristics of Paenibacillus polymyxa GBR-1 involved in root rot of stored Korean ginseng. J Ginseng Res 40:453–461. https://doi.org/10.1016/j.jgr.2015.09.003
doi: 10.1016/j.jgr.2015.09.003
Shi L, Du N, Shu S et al (2017) Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Sci Rep 7:41234. https://doi.org/10.1038/srep41234
doi: 10.1038/srep41234 pubmed: 28198807
Li T, Mann R, Kaur J et al (2021) Transcriptomics differentiate two novel bioactive strains of Paenibacillus sp isolated from the perennial ryegrass seed microbiome. Sci Rep 11:15545. https://doi.org/10.1038/s41598-021-94820-2
doi: 10.1038/s41598-021-94820-2 pubmed: 34330961
Araujo R, Dunlap C, Franco CMM (2020) Analogous wheat root rhizosphere microbial successions in field and greenhouse trials in the presence of biocontrol agents Paenibacillus peoriae SP9 and Streptomyces fulvissimus FU14. Mol Plant Pathol 21:622–635. https://doi.org/10.1111/mpp.12918
doi: 10.1111/mpp.12918 pubmed: 32056349
Tang T, Zhang Y, Wang F et al (2022) Paenibacillus terrae PY8 controls Botrytis cinerea and modifies the endophytic microbial community of the medicinal plant. Paris polyphylla Biological Control 169:104888. https://doi.org/10.1016/j.biocontrol.2022.104888
doi: 10.1016/j.biocontrol.2022.104888
Keller A, Brandel A, Becker MC et al (2018) Wild bees and their nests host Paenibacillus bacteria with functional potential of avail. Microbiome 6:229. https://doi.org/10.1186/s40168-018-0614-1
doi: 10.1186/s40168-018-0614-1 pubmed: 30579360 pmcid: 6303958
Leska A, Nowak A, Czarnecka-Chrebelska KH (2022) Adhesion and anti-adhesion abilities of potentially probiotic lactic acid bacteria and biofilm eradication of honeybee (Apis mellifera L.) Pathogens. Molecules 27:8945. https://doi.org/10.3390/molecules27248945
doi: 10.3390/molecules27248945 pubmed: 36558073 pmcid: 9786635
Lewkowski O, Poehlein A, Daniel R, Erler S (2022) In the battle of the disease: a transcriptomic analysis of European foulbrood-diseased larvae of the Western honey bee (Apis mellifera). BMC Genomics 23:837. https://doi.org/10.1186/s12864-022-09075-6
doi: 10.1186/s12864-022-09075-6 pubmed: 36536278 pmcid: 9764631
Gaggìa F, Baffoni L, Stenico V et al (2015) Microbial investigation on honey bee larvae showing atypical symptoms of European foulbrood. Bull Insectology 68:321–327
Maken Al Qarni AM, Joseph MRP, Moadi YM, et al (2017) Localized severe gingivitis caused by Paenibacillus apiarius in a 28-year-old male patient: a first case report. IJMDCR 4:1–3. https://doi.org/10.15713/ins.ijmdcr.68
Ferguson J, Gailey M, Volk S (2019) Paenibacillus alvei multifocal cavitary lung abscesses in an immunocompetent man: case report and literature review. Infect Dis Clin Pract 27:73–76. https://doi.org/10.1097/IPC.0000000000000709
doi: 10.1097/IPC.0000000000000709
Goswami D, Dhandhukia P, Thakker JN (2016) Expanding the horizons for the use of Paenibacillus species as PGPR for sustainable agriculture. In: Islam MT, Rahman M, Pandey P et al (eds) Bacilli and agrobiotechnology. Springer International Publishing, Cham, pp 281–307
doi: 10.1007/978-3-319-44409-3_12
Smith D, Bastug K, Burgoine K, et al (2023) Human Paenibacillus infections: a systematic review with comparison of adult and infant cases. medRxiv [Preprint]. https://doi.org/10.1101/2023.09.19.23295794

Auteurs

Jakub Dobrzyński (J)

Institute of Technology and Life Sciences - National Research Institute, Al. Hrabska 3, 05-090, Raszyn, Poland. j.dobrzynski@itp.edu.pl.

Aleksandra Naziębło (A)

Institute of Technology and Life Sciences - National Research Institute, Al. Hrabska 3, 05-090, Raszyn, Poland. a.nazieblo@itp.edu.pl.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases

Classifications MeSH